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C H A P T E R 5

Empirical Modeling with Data
Fitting

In this chapter the model building is empirical in nature, i.e., the functional form
of the relationship between the dependent and independent variables is found by
direct examination of data related to the process.

Data fitting problems have several common elements. The model has the
general form

y = f(x1, . . . , xN ;w1, . . . , wM )

and the parameters wi are determined empirically from the observations

{(x(i), y(i))}P
i=1

by requiring f to be such that

y(i) = f(x
(i)
1 , . . . , x

(i)
N ;w)

or at least that the error function E(w) defined by

S(w) =
∑

i

(y(i) − f(x
(i)
1 , . . . , x

(i)
N ;w1, . . . , wM ))2

be small. This error function seeks to minimize the sum of squares of the residuals.

As we shall see, other error functions are possible but least squares is certainly
the most widely used and we will focus on this approach at the outset. Later
in this chapter in Section 5.3 we will also consider the important case of uniform
approximation.

EXAMPLE 5.1

A Radial basis function model has the form

f(x;w, c) = w0 +

Nc
∑

k=1

wkφ(‖x − ck‖)

where the wk are the weights and the ck are the centers of the basis functions. An
example of a radial basis function is

φ(r) = exp(−r2)

The norm ‖ · ‖ is generally taken to be the Euclidean distance.
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5.1 LINEAR LEAST SQUARES

In this section we begin by revisiting an example from the previous chapter followed by a
general formulation of linear least squares and some simple extensions to exponential fits.

5.1.1 The Mammalian Heart Revisited

Recall from Example 2.11 in Subsection 2.3.2 that a sequence of proportionalities
produced the model

r = kw−1/3

where w is the body weight of a mammal and r is its heart rate. The data on
Figure 2.8 corresponds to observations

{(w
−1/3
i , ri)}

collected for various measured rates and weights. The residual error for the ith
measurement is

εi = ri − kw
−1/3
i

and the total squared error is

E =

P
∑

i=1

ε2i

We rewrite this error as a function of the unknown slope parameter k as

E(k) =

P
∑

i=1

(ri − kw
−1/3
i )2

To minimize E as a function of k we compute the derivative of E w.r.t. k, i.e.,

dE

dk
=

P
∑

i=1

2(ri − kw
−1/3
i ) · (−w

−1/3
i ) = 0

From which it follows that

k =

∑P
i=1 riw

−1/3
i

∑P
i=1 w

−2/3
i

Thus we can obtain an estimate for the slope of the line empirically from the data.

5.1.2 General Formulation

In this section we focus our attention to one of the most widely used models

f(x;m, b) = mx + b

To clean-up the notation we now use subscripts to label points for domain data that
is one dimensional; we used superscripts in the previous section when the dimension
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FIGURE 5.1: Linear least squares. The line y = mx + b is determined such that the residuals ε2i are

minimized.

of the domain could exceed one. For a set of observations {(xi, yi)}, i = 1, . . . , P ,
the total squared error is given by

E(m, b) =
P

∑

i=1

(yi − mxi − b)2 (5.1)

Now because there are two parameters that determine the error function the nec-
essary condition for a minimum is now

∂E

∂m
= 0

∂E

∂b
= 0

Solving the above equations gives the slope of the line as

m =
(
∑

yi)(
∑

xi) − P
∑

yixi

(
∑

xi)2 − P
∑

x2
i

and its intercept to be

b =
−(

∑

yi)(
∑

x2
i ) + (

∑

xi)(
∑

yixi)

(
∑

xi)2 − P
∑

x2
i
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Interpolation Condition. In this section we present another route to the
equations for m and b produced in the previous section. Again, the input data
is taken as {xi}, the output data is {yi} and the model equation is y = mx + b.
Applying the interpolation condition for each observation we have

y1 = mx1 + b

y2 = mx2 + b

y3 = mx3 + b

...

yP = mxP + b

In terms of matrices










1 x1

1 x2

...
...

1 xP











(

b

m

)

=











y1

y2

...
yP











In terms of matrices we can summarize the above as

Xb = y

We can reveal the relationship between the previous approach using calculus and
this approach with the interpolation condition by hitting both sides of the above
matrix equation with the transpose XT

(

1 1 . . . 1
x1 x2 . . . xP

)











1 x1

1 x2

...
...

1 xP











(

b

m

)

=

(

1 1 . . . 1
x1 x2 . . . xP

)











y1

y2

...
yP











In terms of the matrices,

XT Xb = XT y

Multiplying out produces the equations that are seen to be the same as those in
the above section, i.e.,

(

P
∑

xi
∑

xi

∑

x2
i

)(

b

m

)

=

( ∑

yi
∑

xiyi

)

In linear algebra these equations are referred to as the normal equations.

There are many algorithms in the field of numerical linear algebra developed
precisely for solving the problem

Xb = y

We will consider these more in the problems.
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5.1.3 Exponential Fits

We have already seen models of the form

y = kxn

where n was given. How about if n is unknown? Can it be determined empirically
from the data? Note now that the computation of the derivative of the error
function w.r.t. n is now quite complicated. This problem is resolved by converting
it to a linear least squares problem now in terms of logarithms. Specifically,

ln y = ln(kxn)

= ln k + lnxn

= ln k + n ln x

This is now seen to be a linear least squares problem

y′ = nx′ + k′

where we have made the substitutions y′ = ln y, k′ = ln k and x′ = lnx. Now one
can apply the standard least squares solution to determine n and k′. The value of
k can be found as well by

k = exp(k′)

5.1.4 Fitting Data with Polynomials

In the previous section we consider the basic linear model f(x; c0, c1) = c0 + c1x.
The simplest extension to this is the second order polynomial

f(x; c0, c1, c2) = c0 + c1x + c2x
2

Note first that adding the term c2x
2 will change the least square fit values of the

coefficients c0, c1 obtain from the linear model and hence all the coefficients c0, c1

and c2 must be computed. The least squares procedure follows along lines similar
to the previous section. We assume a set of observations {(xi, yi)} and define the
sum of the squares of the model residuals to be the error function, i.e.,

E(c0, c1, c2) =

P
∑

i=1

(yi − c0 − c1xi − c2x
2
i )

2 (5.2)

Now requiring

∂E

∂c0
= 0

∂E

∂c1
= 0

∂E

∂c2
= 0
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The resulting necessary conditions, written in terms of matrices, are then





P
∑

xi

∑

x2
i

∑

xi

∑

x2
i

∑

x3
i

∑

x2
i

∑

x3
i

∑

x4
i









c0

c1

c2



 =





∑

yi
∑

xiyi
∑

yix
2
i



 (5.3)

As for the linear model, it is possible to solve for the parameters c0, c1 and c2

analytically, i.e., in closed form. It is less cumbersome to write Equation (5.3) as

Xc = z

where c is the column vector made up of the elements (c0, c1, c2) and z is the column
vector comprised of the elements (

∑

yi,
∑

xiyi,
∑

yix
2
i ) and X is the 3× 3 matrix

on the left of Equation (5.3). Now a computer package can be used to easily solve
the resulting matrix equation.

Lagrange Polynomials. Consider the first degree polynomial defined by

P1(x) =
x − x2

x1 − x2
y1 +

x − x1

x2 − x1
y2

By construction, it is clear that

P1(x1) = y1

and

P1(x2) = y2

So we have found the unique line passing through the points {(x1, y1), (x2, y2)}.

This procedure may be continued analogously for more points. A second
degree polynomial passing through three prescribed points is given by

P2(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
y1 +

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
y2 +

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
y3

By construction, it again may be verified that

P2(x1) = y1,

P2(x2) = y2,

and

P2(x3) = y3.

A pattern has emerged that makes it apparent that this simple procedure may
be employed to fit a polynomial of degree n through a set of n + 1 points.
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FIGURE 5.2: Comparative polynomial approximation to a 10 point data set.
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FIGURE 5.3: Degree 4 and degree 8 polynomials applied to the data (w
−1/3

i , ri).

5.1.5 Interpolation versus Least Squares

Dangers of Higher Order Polynomials. It is clear from the preceding section
that we can always find a polynomial of degree n to exactly fit (i.e., satisfy the
interpolation condition) n+1 points. So why not simply use high order polynomials?
To answer this question consider the model

f(x) = c20x
20 + c19x19 + · · · + c1x1 + c0

If one of the coefficients is perturbed by a small value ε the resulting model may
predict wildly different results. For example, let

g(x) = (c20 + ε)x20 + c19x19 + · · · + c1x1 + c0

Then

g(x) = εx20 + f(x)

So, even if ε is small the difference between f(x) and g(x) is potentially very large.
This is a manifestation of ill-conditioning of high degree polynomials, i.e., small
changes in parameters may result in large changes in the function.

See Figure 5.3 for an example of the oscillations that appear with higher order
polynomials.
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5.2 SPLINES

One obvious procedure for reducing the need for higher order polynomials is to
restrict each polynomial for the description of limited contiguous data subsets.
This is the central idea behind splines. A spline is a piecewise defined function

S(x) =















































S1(x) if x1 ≤ x < x2,

S2(x) if x2 ≤ x < x3,
...

...

Sj(x) if xj ≤ x < xj+1,
...

...

Sn(x) if xn ≤ x < xn+1

(5.4)

that satisfies the interpolation conditions for all the data points

S(xj) = yj = Sj(xj) (5.5)

Furthermore, the piecewise defined models may be joined by enforcing auxil-

iary conditions to be described. We begin with the simplest case.

5.2.1 Linear Splines

For linear splines the piecewise function takes the form

Sj(x) = c
j
0 + c

j
1x

and this is valid over the interval xj ≤ x < xj+1. (See Figure 5.4.)
For x1 ≤ x < x2 the function S1(x) is the line passing through the points

(x1, y1) and (x2, y2). The interpolation condition S1(x1) = y1 requires

c1
0 + c1

1x1 = y1.

The matching condition

S1(x2) = S2(x2) = y2

requires

c1
0 + c1

1x2 = y2

This system of two equations in two unknowns has the solutions

c1
0 =

x2y1 − x1y2

x2 − x1

and

c1
1 =

−y1 + y2

x2 − x1

Similarly for S2(x)

S2(x) = c2
0 + c2

1x
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The parameters c2
0 and c2

1 are then determined by conditions

{

S2(x2) = y2

S2(x3) = S3(y3) = y3

(5.6)

which can be found to be

c2
0 =

x3y2 − x2y3

x3 − x2

and

c2
1 =

−y2 + y3

x3 − x2

In general, it follows
{

Sj(xj) = yj

Sj(xj+1) = Sj+1(xj+1) = yj+1

(5.7)

which can be found to be

c
j
0 =

xj+1yj − xjyj+1

xj+1 − xj

and

c
j
1 =

−yj + yj+1

xj+1 − xj

5.2.2 Cubic Splines

Notice that with linear splines that the function matches at interpolation points,
i.e.,

Sj(xj+1) = Sj+1(xj+1)

but that in general the derivative does not match, i.e.,

S
′

j(xj+1) = S
′

j+1(xj+1)

This potential problem may be overcome by employing cubic splines (quadratic
splines do not provide enough parameters).

For cubic splines the piecewise function takes the form

Sj(x) = c
j
0 + c

j
1x + c

j
2x

2 + c
j
3x

3

and this is valid over the interval xj ≤ x < xj+1. To simplify notation we will only
consider two segments of S(x)

S(x) =

{

S1(x) if x1 ≤ x < x2,

S2(x) if x2 ≤ x < x3

(5.8)

Now
S1(x) = c1

0 + c1
1x + c1

2x
2 + c1

3x
3

and
S2(x) = c2

0 + c2
1x + c2

2x
2 + c2

3x
3
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FIGURE 5.4: Linear splines.

And we observe that there are 8 parameters.
Three equations are obtained by employing the interpolation conditions











S1(x1) = y1

S2(x2) = y2

S2(x3) = y3

(5.9)

The matching condition for the function value is

S1(x2) = S2(x2) = y2

Given there are 8 parameters and only 4 equations specified we require 4 more
relations.

We will require that first and second derivatives match at the interior points,
{

S
′

1(x2) = S
′

2(x2)

S′′

1(x2) = S′′

2(x2)
(5.10)

The additional two parameters may be obtained by applying conditions on
the derivatives at the endpoints x1 and x3. One possibility is to require

{

S
′′

1 (x1) = 0

S
′′

2 (x3) = 0
(5.11)
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FIGURE 5.5: Cubic splines.

Since no data matching is involved these are called natural splines.
For a comparison of how linear and cubic splines fit a simple data set see

Figure 5.5.

5.3 DATA FITTING AND THE UNIFORM APPROXIMATION

The topic of fitting a model to a data set can also be put into the framework of
a linear program. Again, if we have a data set of domain (input) values {xi} and
associated range (output) values {yi} we would like to determine the parameters
{w1, . . . , wk} such that

yi = f(xi;w1, . . . , wk)

An alternative to requiring that the sum of the squares of the residuals be
zero is to simply minimize the maximum residual. This approach is known as the
uniform approximation, or Chebyshev criterion. Since large negative residuals would
make this meaningless we minimize the maximum absolute value of the residual.

To implement this idea, we first compute each residual εi as

εi = yi − f(xi;w1, . . . , wk)

and from all these determine the largest

εmax = max
i

|εi|
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which will serve as our objective function. So the programming problem is

min
i

εmax

where based on the definition of εmax we have the side constraints

|εi| ≤ εmax

So, for a linear model, f(x) = ax + b we have

εi = yi − axi − b

so the constraints become
|yi − axi − b| ≤ εmax

or
−εmax ≤ yi − axi − b ≤ εmax

Thus the linear program is to

min εmax

subject to the constraints

−εmax − yi + axi + b ≤ 0

−εmax + yi − axi − b ≤ 0

where i = 1, . . . , P .
In matrix notation we may rewrite the constraints as





























−x1 −1 −1
x1 +1 −1
...

...
...

−xi −1 −1
xi +1 −1
...

...
...

−xP −1 −1
xP +1 −1

































a

b

εmax



 ≤





























−y1

+y1

...
−yi

+yi

...
−yP

+yP





























Now solving this linear program to implement the uniform approximation
approach on the uniform noise data of Table 5.1 produces the linear model equation

y = 0.9937x − 0.275,

while the least squares error criterion produces the model

y = 0.8923x − 0.5466.

For the uniform noise data the squared error was found to be 11.543 for the uniform
approximation model while for the least squares model it is 9.998. Please see the
errors in Table 5.1 and the comparative plot of the two models in Figure 5.6.
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FIGURE 5.6: Least squares and uniform approximation to a linear trend with uniformly distributed

additive noise.

xi yi εi uniform εi least squares
1 2.3525 1.6338 0.9136
2 0.0786 -1.6338 -2.2527
3 3.7251 1.0191 0.5016
4 3.5179 -0.1818 -0.5979
5 6.3272 1.6338 1.3190
6 6.0113 0.3242 0.1108
7 7.8379 1.1571 1.0451
8 7.7156 0.0411 0.0305
9 8.2185 -0.4496 -0.3589
10 8.7586 -0.9032 -0.7111

TABLE 5.1: The data to be fit comprise the first two columns. The point-wise error for the uniform

approximation and least squares approximation are in columns three and four, respectively. The

underlined errors are those with maximum magnitude for each model. As expected, the uniform

approximation has a smaller maximum error.
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5.3.1 Error Model Selection?

Now we have seen that there is no unique way to compute the coefficients that fit
a given model to data. The model is dependent on the way we measure the error
(note that if our model is exact–e.g., the interpolation condition is satisfied–then
the coefficients are unique and the error is zero). So the natural question arises:
given a collection of data what is the appropriate error measure. The answer to this
question lies partly in the nature of the data. If your data is very accurate, then
a uniform approximation is indeed appropriate. If your data contains statistical
outliers or lots of noise, a least squares approximation may be more robust.

The ultimate decision factor in what error term to use is in the added value
of the model. If the predictive value of the model is superior in one error measure
than another the choice is clear. Establishing superiority can often be challenging
in practice.
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PROBLEMS

5.1. Find the parameters a and b such that the models

y = ax

and
y = bx

2

fit the data {(0, 0), (1, 1), (2, 3)} according to the least squares criterion and com-
pare the errors of the models. Without doing the calculation, can you predict
what the model error would be for the model

y = cx + dx
2

Give your reasoning. Hint: You need not explicitly calculate c and d; considering
the equations that produce them will be sufficient.

5.2. Find the line y = b + mx of best fit through the data

{(.1, .2), (.2, .3), (.3, .7), (.5, .2), (.75, .8)}

using the least squares criterion.
5.3. Consider the model

f(x; c0, c1) = c0x
−3/2 + c1x

5/2

Use the least squares approach to determine equations for c0 and c1 in terms of
available data (xi, yi)

P
i=1.

5.4. Consider the mammalian pulse rate data (ri, wi)
24
i=1 provided in Table 2.1 in

Subsection 2.3.2. Match the data to the models
(a) r = b + mw−1/3

(b) r = kwn

using least squares and compute the corresponding error terms given by Equation
(5.1). You may use the Matlab least square codes provided, but you will first
need to take appropriate transformations of the data.

5.5. Write MATLAB code to fit a second order polynomial

f(x; c0, c1, c2) = c0 + c1x + c2x
2

to the linearized mammalian heart data consisting of components {(w
−1/3
i , ri)}.

Compute the total squared error E(c0, c1, c2) given by Equation (5.2) and com-
pare with the error term E(m, b) found in Problem 5.4 (a). You may modify the
code provided for this problem.

5.6. Derive the matrix Equation (5.3).
5.7. Rederive the matrix Equation (5.3) using the interpolation approach of Subsec-

tion 5.1.2.
5.8. Derive the 4 × 4 system of equations required to fit the model

f(x; c0, c1, c2, c3) = c0 + c1x + c2x
2 + c3x

3

Put this system into matrix form and compare with the result in Equation (5.3).
Can you extend this pattern to write down the matrix form of the least squares
equations for the model

f(x) = c0 + c1x + c2x
2 + · · · + c9x

9

No exact derivation is required for this last part.
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5.9. Reread Section 5.1.4 and propose a formula for a polynomial of degree 3, P3(x),
such that the interpolation conditions P3(x1) = y1, P3(x2) = y2, P3(x3) = y3,
and P3(x4) = y4 are satisfied.

5.10. Find the linear spline through points {(0, 0), (2, 1), (3,−2), (5, 2)}.
5.11. Apply MATLAB’s cubic spline routine to the Fort Collin’s daily temperature

data provided on odd days in September 2002; see Table 5.2. Use this model to
predict the temperature on the even days. Compare your predictions with the
actual temperature values provided in Table 5.3. Plot your results.

Day 5pm temperature
1 87.0
3 83.3
5 89.7
7 82.3
9 65.6
11 59.8
13 65.5
15 77.1
17 69.1
19 63.8
21 51.1

TABLE 5.2: Fort Collins’ temperatures on odd days in September, 2002. All temperatures recorded

at 5pm. Use this data to build spline model.

Day 5pm temperature
2 80.3
4 87.1
6 90.1
8 79.2
10 64.4
12 60.2
14 71.2
16 73.9
18 58.4
20 73.5

TABLE 5.3: Fort Collins’ temperatures on even days in September, 2002. All temperatures recorded

at 5pm. Use this data to test spline model.

5.12. Consider the data model
f(x) = aσ(bx + c)

where the sigmoidal function is given by

σ(x) =
1

1 + exp(−x)

Given a data set of input output pairs (xi, yi) write down the least squares
optimization criterion for the unknown model parameters a, b, c. Show that the
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resulting system for a, b, c is nonlinear. Describe briefly how would you solve for
them (without actually doing it).

5.13. Using the model in Exercise 5.12 compute a, b and c for the sample data set
{(−.3,−.5), (−.1,−.2), (0, .1), (.2, .3), (.6, .6)}. Is this a good model for the data?
How might you improve it?


