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Preface

These materials are being developed with support from National Science Founda-
tion Award no. 0126650 entitled A Mathematical Modeling Program for Undergrad-

uates in Science, Mathematics, Engineering and Technology.
The objective of this project is the development of innovative educational

materials that incorporate a novel educational approach and perspective to enhance
the teaching and learning of mathematics for the purposes of knowledge discovery.
The general undergraduate educated with these materials will possess a readily
applicable toolbox of mathematical ideas for quantifying real world problems as
well as problem solving skills, and possibly the most importantly, the ability to
interpret results and further understanding.

Our pedagogical perspective consists of the observation that mathematical
modeling is often taught backwards. An application of interest is presented and
then appropriate mathematical tools are subsequently invoked. The beginner is
left with the obvious concern. How does one decide which method to use on a new
problem? Our proposed solution to this dilemma is to teach mathematics first and
then show why a given mathematical methodology can be applied to the modeling
problem. We will be successful if the student completes their modeling course based
on these materials with a good sense of what makes various mathematical methods
inherently different. Furthermore, students that are aware of the fundamental dis-
tinguishing characteristics of the array of methodologies should now be equipped to
address this question of central importance in modeling, i.e., which method when!

This text is the first of two planned works to establish ”proof of concept” of
a new approach to teaching mathematical modeling. The scope of the text is the
basic theory of modeling from a mathematical perspective. A second applications
focussed text will build on the basic material of the first volume.

It is typical that students in a mathematical modeling class come from a wide
variety of disciplines. In addition, their preparation and mathematical sophistica-
tion can vary as widely as their areas of interest. This heterogeneity makes the
teaching and learning of mathematical modeling a significant challenge. One of the
main student prototypes is a intelligent although possibly mathematically naive
student that must learn mathematically modeling to make progress in an area of
research. If a course or textbook does not provide the necessary information for
these good students to bridge educational gaps students everyone suffers. Indeed,
most textbooks fail to be accessible to such audiences.

With enhancing accessibility as our motivation, we propose to implement a
simple pedagogical device to facilitate the use of the text by students of widely
varying backgrounds. This device consists of graded levels of presentation denoted
by (E) for elementary, (I) for intermediate and (A) for advanced.

• (E) Mathematical beginners will find much of interest in the elementary sec-
tions as well as foundation material for further study. The diligent student
can use this self-contained treatment to pave the way to reading of more
advanced sections. The basic properties of mathematical techniques will be
presented with an emphasis on how methods lead to specific applications.

5
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6 Preface

• (I) Intermediate material builds on the elementary material and extends the
students expertise. Often intermediate material will involve computer exper-
iments to stimulate more theoretical discussions in the advanced material.
A good understanding of intermediate material should permit a student to
develop new applications of central mathematical ideas.

• (A) Advanced material will provide mathematically mature students with a
solid theoretical foundation for the subject. Mastery of this subject mat-
ter should provide the student with the insight required to further develop
mathematical models.

If a section is labeled as (E) then all its subsections are at the same level. If it
is not labelled, then each individual subsection will be labelled for level of difficulty.

These texts will be pilot tested at Colorado State University during the course
of development and will incorporate a fundamentally new approach to modeling
through general mathematical principles rather than ad hoc lists of methods and
techniques. These methods will be demonstrated within the context of on-going
state-of-the-art interdisciplinary research projects. (Such an approach will have
the added advantage of broadening students perspectives and appreciation for the
nature of basic university research.) The basic aim of the materials is to present an
innovative approach to inform and educate students about the power and impor-
tance of basic mathematics and mathematical modeling in the process of knowledge
discovery.

Michael Kirby
Gerhard Dangelmayr
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C H A P T E R 1

Mathematical Modeling

Mathematical modeling is becoming an increasingly important subject as comput-
ers expand our ability to translate mathematical equations and formulations into
concrete conclusions concerning the world, both natural and artificial, that we live
in.

1.1 EXAMPLES OF MODELING

Here we do a quick tour of several examples of the mathematical process. We
present the models as finished results as opposed to attempting to develop the
models.

1.1.1 Modeling with Difference Equations

Consider the situation in which a variable changes in discrete time steps. If the
current value of the variable is an then the predicted value of the variable will be
an+1. A mathematical model for the evolution of the (still unspecified) quantity
an could take the form

an+1 = αan + β

In words, the new value is a scalar multiple of the old value offset by some constant
β. This model is common, e.g., it is used for modeling bank loans. One might
amend the model to make the dependence depend on more terms and to include
the possibility that every iteration the offset can change, thus,

an+1 = α1an + α2a
2
n + βn

This could correpsond to, for example, a population model where the the migration
levels change every time step. In some instances, it is clear that information required
to predict a new value goes back further than the current value, e.g.,

an+1 = an + an−1

Note now that two initial values are required to evolve this model. Finally, it may
be that the form of the difference equations are unknown and the model must be
written

an+1 = f(an, an−1, an−M−1)

Determining the nature of f and the step M is at the heart of model formulation
with difference equations. Often observed data can be employed to assist in this
effort.

1.1.2 Modeling with Ordinary Differential Equations

Although modeling with ordinary differential equations shares many of the ideas of
modeling with the difference equations discussed above, there are many fundamen-
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8 Chapter 1 Mathematical Modeling

tal differences. At the center of these differences is the assumption that time is a
continuous variable.

One of the simplest differential equations is also an extremely important
model, i.e.,

dx

dt
= αx

In words, the rate of change of the quantity x depends on the amount of the
quantity. If α > 0 then we have exponential growth. If α < 0 the situation is
exponetial decay. Of course additional terms can be added that fundamentally
alter the evolution of x(t). For example

dx

dt
= α1x + α2x

2

The model formulation again requires the development of the appropriate right-
hand side.

In the above model the value x on the right hand side is implicitly assumed to
be evaluated at the time t. It may be that there is evidence that the instantaneous
rate of change at time t is actually a function of a previous time, i.e.,

dx

dt
= f(x(t)) + g(x(t − τ))

This is referred to as a delay differential equation.

1.1.3 Modeling with Partial Differential Equation

In the previous sections on modeling the behaviour of a variable as a function of
time we assumed that there was only one independent variable. Many situations
arise in practice where the number of independent variables is larger than two. For
spatio-temporal models we might have time and space (hence the name!), e.g.,

∂f

∂t
= α

∂2f

∂x2

or
∂2f

∂t2
=

∂2f

∂x2
+

∂2f

∂y2

1.1.4 Optimization

In many modeling problems the goal is to compute the ”best” solution. This may
correspond to maximizing profit in a company, or minimizing loss in a conflict. It
is no surprise that optimization techniques take a central seat in the mathematical
modeling literature.

Now one may allow x ∈ R
n and require that

x∗ = arg min f(x)

The quantity f(x) is referred to as the objective function while the vector x con-
sists of decision variables. Because x sits in R

n the problem is referred to as
unconstrained.
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Section 1.2 The Modeling Process 9

Alternatively, one might require that the solution x have all positive compo-
nents. If we refer to this set as S then the optimization problem is constrained

x∗ = arg min
x∈S

f(x)

If the objective function as well as the equations that define the constraint set
are linear, than the optimization problem is called a linear programming problem.
Otherwise, the problem is referred to as a nonlinear programming problem. As we
shall see, solution methods for linear and nonlinear programming problems are very
different.

1.1.5 Modeling with Simulations

Many problems may afford a mathematical formulation yet be analytically in-
tractable. In these situations a computer can implement the mathematics literally
and repetitively often times to extreme advantage.

Simulating Games.

• What is the probability that you can win a game of solitaire?

• What is the best strategy for playing blackjack?

• Given a baseball team consisting of certain players, in what order should they
hit?

On the other hand, computer simulations can be employed to model evolution
equations. Applications in the realm of fluid dynamics and weather prediction are
well established. A striking new example of such simulation modeling is attempting
to model electrical activity in the brain.

1.1.6 Function Fitting: Data Modeling

Often data is available from a process to assist in the modeling. How can functions
be computed that reflect the relationships between variables in the data. Produce
a model

y = f(x;w)

and using the set of input output pairs compute the parameters w. In some cases
the form of f may be guessed. In other cases a model free approach can be used.

1.2 THE MODELING PROCESS

The goal in all modeling problems is added value. Something novel must be learned
from the modeling process or one has completed an exercise in futility, or mathe-
matical wheel spinning, depending on your perspective. There are many obvious
questions the answers to which have inherent added value. For example:

• Should a stock be bought or sold?

• Is the earth becoming warmer?
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10 Chapter 1 Mathematical Modeling

• Does creating a law have a positive or negative societal effect?

• What is the most valuable property in monopoly?

Clearly this is a very small start to an extremely long list.

1.2.1 An Algorithm for Modeling?

The modeling process has a sequence of common steps that serve as an abstraction
for the modeler:

• Identify the problem and questions.

• Identify the relevant variables in a problem.

• Simplify until tractable.

• Relate these variables mathematically.

• Solve.

• Does the solution provide added value?

• Tweak model and compare solutions.

1.3 THE DELICATE SCIENCE OF ERRORS

If one had either infinite time or infinite computing power error analysis would pre-
sumably be a derelict activity: all models would be absolutely accurate. Obviously,
in reality, this is not the case and a well-accepted modus operandi in modeling is
committing admissible errors. Of course, in practice, the science is more ad hoc. If
terms in an equation introduce computational difficulties the immediate question
arises as to what would happen if those terms are ignored? In theory we would
rather keep them but in practice we can’t afford to. Thus the delicate science of
modeling concerns retaining just enough features to make the model useful but not
so many as too make it more expensive to compute than necessary to get out the
desirable information.

We illustrate this concept by examining the seemingly innocuous junior high
school problem

εx2 + x + 1 = 0

Of course we can solve this problem exactly using the quadratic formula1

x = −
1

2ε
±

√
1 − 4ε

2ε
(1.1)

For a moment, let us assume that the quadratic term were actually an unknown
term, e.g.,

εf(x) + x + 1 = 0

1If you don’t recall this, then the famous Science Fiction write Robert Heilein suggested you

not be allowed to vote.
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Section 1.4 Purpose of this Course 11

and that actually computing f might be rather expensive. We might argue that if
ε were very small that this term could safely be ignored. Now let us return to the
simple case of f(x) = x2. If ε is taken as zero then clearly it follows that

x = −1

is the unique solution. However, we know from our quadratic equation however
that if ε = 0.0000001 (any non-zero number would do), then there are two solutions
rather than one. So we have actually lost a potentially important solution by
ignoring what appeared to be a small quantity. In addition, we may also have
introduced inaccuracies into the obtained solution and this issue must be explored.

In essence we are concerned with how quickly the solution changes about the
point ε = 0. A quick graph of Equation (1.1) reveals that the solution changes
rather quickly.

To see how this solution changes as a function of ε consider the series expansion

x = a0 + a1ε + a2ε
2 + a3ε

3 + . . .

Substituting this expansion into the original quadratic results in the new equation

a0 + 1 + (a2
0 + a1)ε + (2a0a1 + a2)ε

2 + · · · = 0

Setting the coefficients of the different powers of ε to zero gives the series solution
for x as

x = −1 − ε − 2ε2 + . . . (1.2)

So if ε ≈ 0.01 we can conclude the error is on the order of 1% and the error will
grow quickly with ε.

This problem is explored further in the exercises and function iteration is
introduced to track down the 2nd solution in the quadratic equation. For further
discussion of these ideas see [4].

1.4 PURPOSE OF THIS COURSE

The primary goal of this course is to assist the student to develop the skills nec-
essary to effectively employ the ideas of mathematics to solve problems. At the
simplest level we seek to promote an understanding of why mathematics is useful
as a language for characterizing the interaction and relationships among quantifiable
concepts, or in mathematical terms, variables. Throughout the text we emphasize
the notion of added value and why it is the driving force behind modeling. For a
given mathematical model to be deemed a success something must be learned that
was not obvious without the modeling procedure. Very often added value comes
in the form of a prediction. In the absence of added value the modeling procedure
becomes an exercise not unrelated to digging a ditch simply to fill it back up again.

The emphasis in this course is on learning why certain mathematical concepts
are useful for modeling. We proceed from mathematics to models rather than the
popular reverse approach and downplay interdisciplinary expertise required in many
specific contexts. We firmly believe that by focusing on mathematical concepts
the ability to transfer knowledge from one setting to another will be significantly
enhanced. Hence, we emphasize the efficacy of certain mathematics for constructing
models.
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12 Chapter 1 Mathematical Modeling

PROBLEMS

1.1. Name three problems that might be modeled mathematically. Why do you think
mathematics may provide a key to each solution. What is the added value in
each case?

1.2. Consider the differential equation

dx

dt
= x

Translate this model to a difference equation. Compare the solutions and discuss.
1.3. Consider the equation

x2 + εx − 1 = 0

for small ε. How does ignoring the middle term εx change your solution? Is this
a serious omission?

1.4. Using a Taylor series expansion express the solution to the quadratic equation
in Equation 1.1 as a series. Include terms up to cubic order.

1.5. Find the cubic term in the expansion in Equation (1.2).
1.6. One approach to determining zeros of a general function, i.e., computing roots

to f(x) = 0, is to rewrite the problem as f(x) = x − g(x) and to employ the
iteration xn+1 = g(xn).
(a) If we take

g(x) = −

1

x

show that the iteration can be written

xn+1 = −

1

ε
(1 +

1

xn

)

(b) Let x0 = −1/ε and compute x1. By considering the Taylor series of the so-
lution of the quadratic equation argue that this is a two term approximation
to the missing solution.

(c) Compute x2.
1.7. (a) Substitute x = y/ε into the equation

εx2 + x + 1 = 0 (1.3)

and multiply the resulting equation for y by ε. Show that this leads to

y2 + y + ε = 0. (1.4)

When ε = 0, the equation (1.4) has two solutions: y = 0 and y = −1. This
suggests that (1.4) allows us to compute both solutions of (1.3) through a
perturbation analysis.

(b) Reproduce the solution to (1.3) given by Eq. (1.2) by computing a solution
of the form

y = b1ε + b2ε2 + b3ε3 + . . .

for (1.4).
(c) Proceed similarly using the form

y = −1 + c1ε + c2ε2 + . . .

to find the expansion of the missing solution to (1.3).


