Stability of Equilibria of Difference Equations

Consider the difference equation

$$x_{n+1} = f(x_n) \tag{1}$$

for a real variable x_n , n = 0, 1, 2, ... Assume \overline{x} is an equilibrium point, that is, a solution of the equation

$$\overline{x} = f(\overline{x}). \tag{2}$$

Definition An equilibrium \overline{x} of the difference equations (1) is asymptotically stable, if for any initial condition x_0 close to \overline{x} the iterates x_n remain close to \overline{x} for all n > 0, and $x_n \to \overline{x}$ as $n \to \infty$. The equilibrium \overline{x} is unstable, if there exists a constant c > 0 such that for any initial condition that is arbitrarily close to \overline{x} yet $|x_0 - \overline{x}| \neq 0$, there is an $n^* > 0$ such that $|x_{n^*} - \overline{x}| > c$.

To study the stability of \overline{x} , consider perturbations

$$\xi_n = x_n - \overline{x}$$
, that is, $x_n = \overline{x} + \xi_n$.

A difference equation for ξ_n is found as

$$\xi_{n+1} = x_{n+1} - \overline{x} = f(x_n) - \overline{x} = f(\overline{x} + \xi_n) - \overline{x}.$$
(3)

If $|\xi_n|$ is small, we can make a Taylor expansion,

$$f(\overline{x} + \xi_n) - \overline{x} = f'(\overline{x})\xi_n + \frac{1}{2}f''(\overline{x})\xi_n^2 + \cdots$$
(4)

Substituting (4) into (3) and keeping only the linear term (proportional to ξ_n) gives the so called *linearized difference equation*,

$$\xi_{n+1} = f'(\overline{x})\xi_n. \tag{5}$$

Since $f'(\overline{x})$ is just a real number we know that the solution of (5) is simply given by

$$\xi_n = \left(f'(\overline{x})\right)^n \xi_0.$$

Thus $\xi_n \to 0$ $(n \to \infty)$ if $|f'(\overline{x})| < 1$ and $|\xi_n| \to \infty$ if $|f'(\overline{x})| > 1$, suggesting that the equilibrium \overline{x} is asymptotically stable and unstable in the former and latter cases, respectively. This is indeed the case:

Theorem If $|f'(\overline{x})| < 1$ then \overline{x} is asymptotically stable, and if $|f'(\overline{x})| > 1$ then \overline{x} is unstable. Note that the theorem does not give any clue about the stability of \overline{x} if $|f'(\overline{x})| = 1$.

Example 1

$$p_{n+1} = p_n - \frac{1}{10}p_n(1-p_n)(2-p_n)$$

= $\frac{4}{5}p_n + \frac{3}{10}p_n^2 - \frac{1}{10}p_n^3 \equiv f(p_n).$

The equilibria are determined by $p_{n+1} = p_n \equiv \overline{p}$ and are given by

$$\overline{p}_1 = 0, \quad \overline{p}_2 = 1, \quad \overline{p}_3 = 2.$$

We calculate the derivatives of f at these equilibrium points to determine their stability:

$$\begin{array}{rcl} f'(0) &=& \frac{4}{5} < 1 & \Rightarrow & \overline{p}_1 \text{ is asymptotically stable} \\ f'(1) &=& \frac{4}{5} + \frac{3}{5} - \frac{3}{10} = \frac{11}{10} > 1 & \Rightarrow & \overline{p}_2 \text{ is unstable} \\ f'(2) &=& \frac{4}{5} + \frac{3}{5} \cdot 2 - \frac{3}{10} \cdot 4 = \frac{4}{5} < 1 & \Rightarrow & \overline{p}_3 \text{ is asymptotically stable.} \end{array}$$

Example 2

$$p_{n+1} = rp_n - rp_n^2 \equiv f(p_n),$$

where r is a parameter with r > 0. Since p_n models a population, we require that p_n be nonnegative. The equilibria \overline{p} satisfy $\overline{p} = r\overline{p} - \overline{p}^2$. There are two solutions,

$$\overline{p}_1 = 0$$
 and \overline{p}_2 satisfies $1 = r - r\overline{p}_2 \Rightarrow \overline{p}_2 = 1 - \frac{1}{r}$ for $r \ge 1$,

since $p \ge 0$. We calculate again derivatives to determine for which values of r the equilibria are asymptotically stable or unstable:

$$\begin{aligned} f'(0) &= r \\ &\Rightarrow \overline{p}_1 \text{ is asymptotically stable for } 0 < r < 1 \text{ and unstable for } r > 1 \\ f'(1-1/r) &= r - 2r(1-1/r) = 2 - r \\ &\Rightarrow \overline{p}_2 \text{ is asymptotically stable for } 1 < r < 3 \text{ and unstable for } r > 3. \end{aligned}$$

Note that f'(0) = 1 for r = 1 as well as f'(1 - 1/r) = 1 for r = 1, while f'(1 - 1/r) = -1when r = 3. Thus when r increases through the special parameter values r = 1 and r = 3the stability properties of the equilibrium points change (and at r = 1 a new equilibrium, namely \overline{p}_2 , is born and coincides at this parameter value with \overline{p}_1). Parameter values of this kind are called *bifurcation points*.