Stability of Equilibria of Difference Equations

Consider the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right) \tag{1}
\end{equation*}
$$

for a real variable $x_{n}, n=0,1,2, \ldots$. Assume \bar{x} is an equilibrium point, that is, a solution of the equation

$$
\begin{equation*}
\bar{x}=f(\bar{x}) \tag{2}
\end{equation*}
$$

Definition An equilibrium \bar{x} of the difference equations (1) is asymptotically stable, if for any initial condition x_{0} close to \bar{x} the iterates x_{n} remain close to \bar{x} for all $n>0$, and $x_{n} \rightarrow \bar{x}$ as $n \rightarrow \infty$. The equilibrium \bar{x} is unstable, if there exists a constant $c>0$ such that for any initial condition that is arbitrarily close to \bar{x} yet $\left|x_{0}-\bar{x}\right| \neq 0$, there is an $n^{*}>0$ such that $\left|x_{n^{*}}-\bar{x}\right|>c$.

To study the stability of \bar{x}, consider perturbations

$$
\xi_{n}=x_{n}-\bar{x}, \quad \text { that is, } \quad x_{n}=\bar{x}+\xi_{n} .
$$

A difference equation for ξ_{n} is found as

$$
\begin{equation*}
\xi_{n+1}=x_{n+1}-\bar{x}=f\left(x_{n}\right)-\bar{x}=f\left(\bar{x}+\xi_{n}\right)-\bar{x} . \tag{3}
\end{equation*}
$$

If $\left|\xi_{n}\right|$ is small, we can make a Taylor expansion,

$$
\begin{equation*}
f\left(\bar{x}+\xi_{n}\right)-\bar{x}=f^{\prime}(\bar{x}) \xi_{n}+\frac{1}{2} f^{\prime \prime}(\bar{x}) \xi_{n}^{2}+\cdots \tag{4}
\end{equation*}
$$

Substituting (4) into (3) and keeping only the linear term (proportional to ξ_{n}) gives the so called linearized difference equation,

$$
\begin{equation*}
\xi_{n+1}=f^{\prime}(\bar{x}) \xi_{n} \tag{5}
\end{equation*}
$$

Since $f^{\prime}(\bar{x})$ is just a real number we know that the solution of (5) is simply given by

$$
\xi_{n}=\left(f^{\prime}(\bar{x})\right)^{n} \xi_{0}
$$

Thus $\xi_{n} \rightarrow 0(n \rightarrow \infty)$ if $\left|f^{\prime}(\bar{x})\right|<1$ and $\left|\xi_{n}\right| \rightarrow \infty$ if $\left|f^{\prime}(\bar{x})\right|>1$, suggesting that the equilibrium \bar{x} is asymptotically stable and unstable in the former and latter cases, respectively. This is indeed the case:

Theorem If $\left|f^{\prime}(\bar{x})\right|<1$ then \bar{x} is asymptotically stable, and if $\left|f^{\prime}(\bar{x})\right|>1$ then \bar{x} is unstable.
Note that the theorem does not give any clue about the stability of \bar{x} if $\left|f^{\prime}(\bar{x})\right|=1$.

Example 1

$$
\begin{aligned}
p_{n+1} & =p_{n}-\frac{1}{10} p_{n}\left(1-p_{n}\right)\left(2-p_{n}\right) \\
& =\frac{4}{5} p_{n}+\frac{3}{10} p_{n}^{2}-\frac{1}{10} p_{n}^{3} \equiv f\left(p_{n}\right)
\end{aligned}
$$

The equilibria are determined by $p_{n+1}=p_{n} \equiv \bar{p}$ and are given by

$$
\bar{p}_{1}=0, \quad \bar{p}_{2}=1, \quad \bar{p}_{3}=2
$$

We calculate the derivatives of f at these equilibrium points to determine their stability:

$$
\begin{array}{ll}
f^{\prime}(0)=\frac{4}{5}<1 & \Rightarrow \bar{p}_{1} \text { is asymptotically stable } \\
f^{\prime}(1)=\frac{4}{5}+\frac{3}{5}-\frac{3}{10}=\frac{11}{10}>1 & \Rightarrow \bar{p}_{2} \text { is unstable } \\
f^{\prime}(2)=\frac{4}{5}+\frac{3}{5} \cdot 2-\frac{3}{10} \cdot 4=\frac{4}{5}<1 & \Rightarrow \bar{p}_{3} \text { is asymptotically stable. }
\end{array}
$$

Example 2

$$
p_{n+1}=r p_{n}-r p_{n}^{2} \equiv f\left(p_{n}\right),
$$

where r is a parameter with $r>0$. Since p_{n} models a population, we require that p_{n} be nonnegative. The equilibria \bar{p} satisfy $\bar{p}=r \bar{p}-\bar{p}^{2}$. There are two solutions,

$$
\bar{p}_{1}=0 \text { and } \bar{p}_{2} \text { satisfies } 1=r-r \bar{p}_{2} \Rightarrow \bar{p}_{2}=1-\frac{1}{r} \text { for } r \geq 1,
$$

since $p \geq 0$. We calculate again derivatives to determine for which values of r the equilibria are asymptotically stable or unstable:

$$
\begin{aligned}
f^{\prime}(0) & =r \\
& \Rightarrow \bar{p}_{1} \text { is asymptotically stable for } 0<r<1 \text { and unstable for } r>1 \\
f^{\prime}(1-1 / r) & =r-2 r(1-1 / r)=2-r \\
& \Rightarrow \bar{p}_{2} \text { is asymptotically stable for } 1<r<3 \text { and unstable for } r>3 .
\end{aligned}
$$

Note that $f^{\prime}(0)=1$ for $r=1$ as well as $f^{\prime}(1-1 / r)=1$ for $r=1$, while $f^{\prime}(1-1 / r)=-1$ when $r=3$. Thus when r increases through the special parameter values $r=1$ and $r=3$ the stability properties of the equilibrium points change (and at $r=1$ a new equilibrium, namely \bar{p}_{2}, is born and coincides at this parameter value with \bar{p}_{1}). Parameter values of this kind are called bifurcation points.

