
Stability of Equilibria of Difference Equations

Consider the difference equation
xn+1 = f(xn) (1)

for a real variable xn, n = 0, 1, 2, . . .. Assume x is an equilibrium point, that is, a solution
of the equation

x = f(x). (2)

Definition An equilibrium x of the difference equations (1) is asymptotically stable, if for
any initial condition x0 close to x the iterates xn remain close to x for all n > 0, and xn → x
as n→∞. The equilibrium x is unstable, if there exists a constant c > 0 such that for any
initial condition that is arbitrarily close to x yet |x0 − x| 6= 0, there is an n∗ > 0 such that
|xn∗ − x| > c.

To study the stability of x, consider perturbations

ξn = xn − x, that is, xn = x+ ξn.

A difference equation for ξn is found as

ξn+1 = xn+1 − x = f(xn)− x = f(x+ ξn)− x. (3)

If |ξn| is small, we can make a Taylor expansion,

f(x+ ξn)− x = f ′(x)ξn +
1

2
f ′′(x)ξ2n + · · · . (4)

Substituting (4) into (3) and keeping only the linear term (proportional to ξn) gives the so
called linearized difference equation,

ξn+1 = f ′(x)ξn. (5)

Since f ′(x) is just a real number we know that the solution of (5) is simply given by

ξn =
(
f ′(x)

)n
ξ0.

Thus ξn → 0 (n → ∞) if |f ′(x)| < 1 and |ξn| → ∞ if |f ′(x)| > 1, suggesting that the equi-
librium x is asymptotically stable and unstable in the former and latter cases, respectively.
This is indeed the case:

Theorem If |f ′(x)| < 1 then x is asymptotically stable, and if |f ′(x)| > 1 then x is unstable.

Note that the theorem does not give any clue about the stability of x if |f ′(x)| = 1.



Example 1

pn+1 = pn −
1

10
pn(1− pn)(2− pn)

=
4

5
pn +

3

10
p2n −

1

10
p3n ≡ f(pn).

The equilibria are determined by pn+1 = pn ≡ p and are given by

p1 = 0, p2 = 1, p3 = 2.

We calculate the derivatives of f at these equilibrium points to determine their stability:

f ′(0) = 4
5
< 1 ⇒ p1 is asymptotically stable

f ′(1) = 4
5

+ 3
5
− 3

10
= 11

10
> 1 ⇒ p2 is unstable

f ′(2) = 4
5

+ 3
5
· 2− 3

10
· 4 = 4

5
< 1 ⇒ p3 is asymptotically stable.

Example 2
pn+1 = rpn − rp2n ≡ f(pn),

where r is a parameter with r > 0. Since pn models a population, we require that pn be
nonnegative. The equilibria p satisfy p = rp− p2. There are two solutions,

p1 = 0 and p2 satisfies 1 = r − rp2 ⇒ p2 = 1− 1

r
for r ≥ 1,

since p ≥ 0. We calculate again derivatives to determine for which values of r the equilibria
are asymptotically stable or unstable:

f ′(0) = r

⇒ p1 is asymptotically stable for 0 < r < 1 and unstable for r > 1

f ′(1− 1/r) = r − 2r(1− 1/r) = 2− r
⇒ p2 is asymptotically stable for 1 < r < 3 and unstable for r > 3.

Note that f ′(0) = 1 for r = 1 as well as f ′(1 − 1/r) = 1 for r = 1, while f ′(1 − 1/r) = −1
when r = 3. Thus when r increases through the special parameter values r = 1 and r = 3
the stability properties of the equilibrium points change (and at r = 1 a new equilibrium,
namely p2, is born and coincides at this parameter value with p1). Parameter values of this
kind are called bifurcation points.
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