Review: Multivariable Calculus used in MATH 331

Partial Derivatives

Consider first a real-valued function $f(x, y)$ depending on two variables $\binom{x}{y}$.

- The partial derivative of f with respect to x at a given point $\left(x_{0}, y_{0}\right)^{T}$ is defined as

$$
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}=\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)\right] .
$$

$\frac{\partial f(x, y)}{\partial x}$ at a generic point $(x, y)^{T}$ can be calculated using standard differentiation rules from single-variable calculus, with y treated as a constant. Subbing for (x, y) the coordinates of a special point $\left(x_{0}, y_{0}\right)^{T}$ gives $\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}$.

- Analogously one defines $\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}$ and $\frac{\partial f(x, y)}{\partial y}$

Example:

$$
\begin{gathered}
f(x, y)=x^{4}+6 x^{2} y^{2}+y^{4}-6 x^{2}-12 y^{2} \\
\frac{\partial f(x, y)}{\partial x}=4 x^{3}+12 x y^{2}-12 x, \quad \frac{\partial f(1,1)}{\partial x}=4 \\
\frac{\partial f(x, y)}{\partial y}=12 x^{2} y+4 y^{3}-24 y, \quad \frac{\partial f(1,1)}{\partial y}=-8
\end{gathered}
$$

General case

- If f depends on n variables we write $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ and $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$.
- For $1 \leq i \leq n$, the partial derivative $\frac{\partial f(x)}{\partial x_{i}}$ is calculated by taking the derivative with respect to x_{i} with all $x_{j}, j \neq i$, treated as constants.

Example:

$$
\begin{gathered}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2} x_{2}+x_{3} x_{4}^{2} \\
\frac{\partial f(x)}{\partial x_{1}}=2 x_{1} x_{2}, \quad \frac{\partial f(x)}{\partial x_{2}}=x_{1}^{2}, \quad \frac{\partial f(x)}{\partial x_{3}}=x_{4}^{2}, \quad \frac{\partial f(x)}{\partial x_{4}}=2 x_{3} x_{4} .
\end{gathered}
$$

Second Order Derivatives [(*): Under suitable assumptions on $f]$

- $\frac{\partial^{2} f(x, y)}{\partial x^{2}}$ is the partial derivative of $\frac{\partial f(x, y)}{\partial x}$ with respect to x.
- $\frac{\partial^{2} f(x, y)}{\partial y^{2}}$ is the partial derivative of $\frac{\partial f(x, y)}{\partial y}$ with respect to y.
- $\frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{\partial}{\partial x} \frac{\partial f(x, y)}{\partial y} \stackrel{(*)}{=} \frac{\partial}{\partial y} \frac{\partial f(x, y)}{\partial x}=\frac{\partial^{2} f(x, y)}{\partial y \partial x}$.

Generally:

- $\frac{\partial^{2} f(x)}{\partial x_{i}^{2}}=\frac{\partial}{\partial x_{i}} \frac{\partial f(x)}{\partial x_{i}}$
- $\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial}{\partial x_{i}} \frac{\partial f(x)}{\partial x_{j}} \stackrel{(*)}{=} \frac{\partial}{\partial x_{j}} \frac{\partial f(x)}{\partial x_{i}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}$.

For first Example above:

$$
\frac{\partial^{2} f(x, y)}{\partial x^{2}}=12 x^{2}+12 y^{2}-12, \quad \frac{\partial^{2} f(x, y)}{\partial x \partial y}=24 x y, \quad \frac{\partial^{2} f(x, y)}{\partial y^{2}}=12 x^{2}+12 y^{2}-24 .
$$

Higher Order Derivatives

Continuing this way one defines higher order derivatives (if they exist)

$$
\frac{\partial^{k} f(x, y)}{\partial x^{m} \partial y^{n}}(m+n=k) \quad \text { or } \quad \frac{\partial^{k} f(x)}{\partial x_{1}^{k_{1}} \partial x_{2}^{k_{2}} \ldots \partial x_{n}^{k_{n}}}\left(k_{1}+k_{2}+\cdots+k_{n}=k\right) .
$$

Critical Points and Minima/Maxima of Functions of Two Variables

Definition A critical point of a function $f(x, y)$ is a point $\left(x_{0}, y_{0}\right)^{T}$ for which

$$
\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial x}=\frac{\partial f\left(x_{0}, y_{0}\right)}{\partial y}=0
$$

Definition $f(x, y)$ has a strict local minimum (maximum) at $\left(x_{0}, y_{0}\right)^{T}$ if there is $\epsilon>0$ such that $f(x, y)>f\left(x_{0}, y_{0}\right)\left(f(x, y)<f\left(x_{0}, y_{0}\right)\right)$ for all $(x, y)^{T}$ with $0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<$ ϵ.

Theorem 1 (Necessary condition for a strict local minimum or maximum) If f has a strict local minimum or maximum at $\left(x_{0}, y_{0}\right)^{T}$ then $\left(x_{0}, y_{0}\right)^{T}$ is a critical point of f.

Theorem 2 (Sufficient condition for a strict local minimum or maximum) If $\left(x_{0}, y_{0}\right)^{T}$ is a critical point of f and

$$
\begin{aligned}
& \text { (1) } \frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x^{2}}>0\left(\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x^{2}}<0\right) \\
& \text { (2) } \frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x^{2}} \cdot \frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial y^{2}}-\left(\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x \partial y}\right)^{2}>0
\end{aligned}
$$

then f has a strict local minimum (maximum) at $\left(x_{0}, y_{0}\right)^{T}$.
Meaning of (1) and (2): Let $H f\left(x_{0}, y_{0}\right)$ be the symmetric 2×2-matrix defined by

$$
H f\left(x_{0}, y_{0}\right)=\left(\begin{array}{cc}
\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{2 x^{2}} & \frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x \partial y} \\
\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x \partial y} & \frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial y^{2}}
\end{array}\right) .
$$

This matrix is called the "Hesse-matrix" or "Hessian" of f at $\left(x_{0}, y_{0}\right)^{T}$. The conditions (1) and (2) imply that $\operatorname{Hf}\left(x_{0}, y_{0}\right)$ is positive (negative) definite, that is,

$$
(\xi, \eta) H f\left(x_{0}, y_{0}\right)\binom{\xi}{\eta}=\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x^{2}} \xi^{2}+2 \frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x \partial y} \xi \eta+\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial y^{2}} \eta^{2}>0 \quad(<0)
$$

for all (ξ, η) with $\xi^{2}+\eta^{2}>0$ (lecture Ch. 4.2-2).
Note: in 2 d there are three types of generic critical points:

- a point at which f has a strict local minimum
- a point at which f has a strict local maximum
- a saddle point: $\operatorname{det} H f\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x^{2}} \cdot \frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial y^{2}}-\left(\frac{\partial^{2} f\left(x_{0}, y_{0}\right)}{\partial x \partial y}\right)^{2}<0$.

Example: $\quad f(x, y)=x^{4}+6 x^{2} y^{2}+y^{4}-6 x^{2}-12 y^{2}$
Critical point equations: $\frac{\partial f(x, y)}{\partial x}=4 x^{3}+12 x y^{2}-12 x=4 x\left(x^{2}+3 y^{2}-3\right)=0$

$$
\frac{\partial f(x, y)}{\partial y}=12 x^{2} y+4 y^{3}-24 y=4 y\left(3 x^{2}+y^{2}-6\right)=0
$$

Solutions:
(1) $(0,0)^{T}$
(2) $x=0$ and $y^{2}=6 \Rightarrow(0, \pm \sqrt{6})^{T}$
(3) $y=0$ and $x^{2}=3 \Rightarrow(\pm \sqrt{3}, 0)^{T}$
(4) If $x y \neq 0 \Rightarrow\left\{\begin{array}{l}x^{2}+3 y^{2}=3 \\ 3 x^{2}+y^{2}=6\end{array}\right\} \Rightarrow x^{2}=\frac{15}{8}, y^{2}=\frac{3}{8} \Rightarrow\left(\pm \sqrt{\frac{15}{8}}, \pm \sqrt{\frac{3}{8}}\right)^{T}$.

To decide which of these critical points is a maximum, minimum or a saddle point, we have to calculate the Hessian at these points using

$$
H f(x, y)=12\left(\begin{array}{cc}
x^{2}+y^{2}-1 & 2 x y \\
2 x y & x^{2}+y^{2}-2
\end{array}\right)
$$

(1) $H f(0,0)=12\left(\begin{array}{rr}-1 & 0 \\ 0 & -2\end{array}\right) \Rightarrow(0,0)^{T}$ is a strict local maximum
(2) $H f(0, \pm \sqrt{6})=12\left(\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right) \Rightarrow(0, \pm \sqrt{6})^{T}$ are two strict local minima
(3) $H f(\pm \sqrt{3}, 0)=12\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) \Rightarrow(\pm \sqrt{3}, 0)^{T}$ are two strict local minima

$$
\begin{align*}
& H f\left(\pm \sqrt{\frac{15}{8}}, \pm \sqrt{\frac{3}{8}}\right)=12\left(\begin{array}{cc}
\frac{5}{4} & \pm \frac{\sqrt{45}}{4} \\
\pm \frac{\sqrt{45}}{4} & \frac{1}{4}
\end{array}\right) \Rightarrow \operatorname{det} H f\left(\pm \sqrt{\frac{15}{8}}, \pm \sqrt{\frac{3}{8}}\right)=144 \cdot\left(-\frac{40}{16}\right)<0 \tag{4}\\
& \Rightarrow\left(\pm \sqrt{\frac{15}{8}}, \pm_{1} \sqrt{\frac{3}{9}}\right)^{T} \text { are four saddle points. }
\end{align*}
$$

Critical Points and Minima/Maxima in Higher Dimensions

- x_{0} is a critical point of $f(x)\left(x=\left(x_{1}, \ldots, x_{n}\right)^{T}\right)$ if $\frac{\partial f\left(x_{0}\right)}{\partial x_{i}}=0$ for all $1 \leq i \leq n$.
- $f(x)$ has a strict local minimum (maximum) at x_{0} if there is $\epsilon>0$ such that $f(x)>$ $f\left(x_{0}\right)\left(f(x)<f\left(x_{0}\right)\right)$ whenever $0<\left\|x-x_{0}\right\|<\epsilon\left(\right.$ where $\left.\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}\right)$.
- If $f(x)$ has a strict local minimum or maximum at x_{0} then x_{0} is a critical point of f.
- If x_{0} is a critical point of $f(x)$ and the (symmetric) Hessian matrix $H f\left(x_{0}\right)$ of second order partial derivatives, $\left(H f\left(x_{0}\right)\right)_{i j}=\frac{\partial^{2} f\left(x_{0}\right)}{\partial x_{i} \partial x_{j}}$, is positive (negative) definite, that is, $\xi^{T} H f\left(x_{0}\right) \xi>0(<0)$ for all $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)^{T}$ with $\|\xi\|>0$, then f has a strict local minimum (maximum) at x_{0}.
- A critical point x_{0} of $f(x)$ with $\operatorname{det} H f\left(x_{0}\right) \neq 0$ can be a point at which f has a strict local minimum, a point at which f has a strict local maximum, or an n-dimensional saddle point.

