Review: Multivariable Calculus used in MATH 331

Partial Derivatives

Consider first a real-valued function f(x, y) depending on two variables $\begin{pmatrix} x \\ y \end{pmatrix}$.

• The partial derivative of f with respect to x at a given point $(x_0, y_0)^T$ is defined as

$$\frac{\partial f(x_0, y_0)}{\partial x} = \lim_{h \to 0} \frac{1}{h} \left[f(x_0 + h, y_0) - f(x_0, y_0) \right].$$

 $\frac{\partial f(x,y)}{\partial x}$ at a generic point $(x,y)^T$ can be calculated using standard differentiation rules from single-variable calculus, with y treated as a constant. Subbing for (x,y) the coordinates of a special point $(x_0, y_0)^T$ gives $\frac{\partial f(x_0, y_0)}{\partial x}$.

• Analogously one defines $\frac{\partial f(x_0, y_0)}{\partial y}$ and $\frac{\partial f(x, y)}{\partial y}$

Example:

$$f(x,y) = x^{4} + 6x^{2}y^{2} + y^{4} - 6x^{2} - 12y^{2}$$
$$\frac{\partial f(x,y)}{\partial x} = 4x^{3} + 12xy^{2} - 12x, \quad \frac{\partial f(1,1)}{\partial x} = 4$$
$$\frac{\partial f(x,y)}{\partial y} = 12x^{2}y + 4y^{3} - 24y, \quad \frac{\partial f(1,1)}{\partial y} = -8$$

General case

- If f depends on n variables we write $x = (x_1, \ldots, x_n)^T$ and $f(x) = f(x_1, \ldots, x_n)$.
- For $1 \leq i \leq n$, the partial derivative $\frac{\partial f(x)}{\partial x_i}$ is calculated by taking the derivative with respect to x_i with all x_j , $j \neq i$, treated as constants.

Example:

$$f(x_1, x_2, x_3, x_4) = x_1^2 x_2 + x_3 x_4^2$$
$$\frac{\partial f(x)}{\partial x_1} = 2x_1 x_2, \quad \frac{\partial f(x)}{\partial x_2} = x_1^2, \quad \frac{\partial f(x)}{\partial x_3} = x_4^2, \quad \frac{\partial f(x)}{\partial x_4} = 2x_3 x_4.$$

Second Order Derivatives [(*): Under suitable assumptions on f]

\$\frac{\partial^2 f(x,y)}{\partial x^2}\$ is the partial derivative of \$\frac{\partial f(x,y)}{\partial x}\$ with respect to \$x\$.
\$\frac{\partial^2 f(x,y)}{\partial y^2}\$ is the partial derivative of \$\frac{\partial f(x,y)}{\partial y}\$ with respect to \$y\$.

•
$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial}{\partial x} \frac{\partial f(x,y)}{\partial y} \stackrel{(*)}{=} \frac{\partial}{\partial y} \frac{\partial f(x,y)}{\partial x} = \frac{\partial^2 f(x,y)}{\partial y \partial x}$$

Generally:

•
$$\frac{\partial^2 f(x)}{\partial x_i^2} = \frac{\partial}{\partial x_i} \frac{\partial f(x)}{\partial x_i}$$

• $\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \frac{\partial f(x)}{\partial x_j} \stackrel{(*)}{=} \frac{\partial}{\partial x_j} \frac{\partial f(x)}{\partial x_i} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}.$

For first Example above:

$$\frac{\partial^2 f(x,y)}{\partial x^2} = 12x^2 + 12y^2 - 12, \quad \frac{\partial^2 f(x,y)}{\partial x \partial y} = 24xy, \quad \frac{\partial^2 f(x,y)}{\partial y^2} = 12x^2 + 12y^2 - 24.$$

Higher Order Derivatives

Continuing this way one defines higher order derivatives (if they exist)

$$\frac{\partial^k f(x,y)}{\partial x^m \partial y^n} (m+n=k) \quad \text{or} \quad \frac{\partial^k f(x)}{\partial x_1^{k_1} \partial x_2^{k_2} \cdots \partial x_n^{k_n}} (k_1+k_2+\cdots+k_n=k).$$

Critical Points and Minima/Maxima of Functions of Two Variables

Definition A critical point of a function f(x, y) is a point $(x_0, y_0)^T$ for which

$$\frac{\partial f(x_0, y_0)}{\partial x} = \frac{\partial f(x_0, y_0)}{\partial y} = 0.$$

Definition f(x, y) has a strict local minimum (maximum) at $(x_0, y_0)^T$ if there is $\epsilon > 0$ such that $f(x, y) > f(x_0, y_0)$ $(f(x, y) < f(x_0, y_0))$ for all $(x, y)^T$ with $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \epsilon$.

Theorem 1 (*Necessary condition for a strict local minimum or maximum*) If f has a strict local minimum or maximum at $(x_0, y_0)^T$ then $(x_0, y_0)^T$ is a critical point of f.

Theorem 2 (Sufficient condition for a strict local minimum or maximum) If $(x_0, y_0)^T$ is a critical point of f and

(1)
$$\frac{\partial^2 f(x_0, y_0)}{\partial x^2} > 0 \quad \left(\frac{\partial^2 f(x_0, y_0)}{\partial x^2} < 0\right)$$

(2)
$$\frac{\partial^2 f(x_0, y_0)}{\partial x^2} \cdot \frac{\partial^2 f(x_0, y_0)}{\partial y^2} - \left(\frac{\partial^2 f(x_0, y_0)}{\partial x \partial y}\right)^2 > 0$$

then f has a strict local minimum (maximum) at $(x_0, y_0)^T$.

Meaning of (1) and (2): Let $Hf(x_0, y_0)$ be the symmetric 2 × 2-matrix defined by

$$Hf(x_0, y_0) = \begin{pmatrix} \frac{\partial^2 f(x_0, y_0)}{\partial x^2} & \frac{\partial^2 f(x_0, y_0)}{\partial x \partial y} \\ \frac{\partial^2 f(x_0, y_0)}{\partial x \partial y} & \frac{\partial^2 f(x_0, y_0)}{\partial y^2} \end{pmatrix}.$$

This matrix is called the "Hesse-matrix" or "Hessian" of f at $(x_0, y_0)^T$. The conditions (1) and (2) imply that $Hf(x_0, y_0)$ is positive (negative) definite, that is,

$$(\xi,\eta)Hf(x_0,y_0)\left(\begin{array}{c}\xi\\\eta\end{array}\right) = \frac{\partial^2 f(x_0,y_0)}{\partial x^2}\xi^2 + 2\frac{\partial^2 f(x_0,y_0)}{\partial x\partial y}\xi\eta + \frac{\partial^2 f(x_0,y_0)}{\partial y^2}\eta^2 > 0 \quad (<0)$$

 $f(x, y) = x^4 + 6x^2y^2 + y^4 - 6x^2 - 12y^2$

for all (ξ, η) with $\xi^2 + \eta^2 > 0$ (lecture Ch. 4.2-2).

Note: in 2d there are three types of generic critical points:

- a point at which f has a strict local minimum
- a point at which f has a strict local maximum
- a saddle point: det $Hf(x_0, y_0) = \frac{\partial^2 f(x_0, y_0)}{\partial x^2} \cdot \frac{\partial^2 f(x_0, y_0)}{\partial y^2} \left(\frac{\partial^2 f(x_0, y_0)}{\partial x \partial y}\right)^2 < 0.$

Example:

Critical point equations:
$$\frac{\partial f(x,y)}{\partial x} = 4x^3 + 12xy^2 - 12x = 4x(x^2 + 3y^2 - 3) = 0$$
$$\frac{\partial f(x,y)}{\partial y} = 12x^2y + 4y^3 - 24y = 4y(3x^2 + y^2 - 6) = 0$$

Solutions:

(1) $(0,0)^T$ (2) x = 0 and $y^2 = 6 \Rightarrow (0, \pm \sqrt{6})^T$ (3) y = 0 and $x^2 = 3 \Rightarrow (\pm \sqrt{3}, 0)^T$

(4) If
$$xy \neq 0 \Rightarrow \left\{ \begin{array}{rrr} x^2 + 3y^2 &=& 3\\ 3x^2 + y^2 &=& 6 \end{array} \right\} \Rightarrow x^2 = \frac{15}{8}, \ y^2 = \frac{3}{8} \Rightarrow (\pm \sqrt{\frac{15}{8}}, \pm \sqrt{\frac{3}{8}})^T$$

To decide which of these critical points is a maximum, minimum or a saddle point, we have to calculate the Hessian at these points using

$$Hf(x,y) = 12 \left(\begin{array}{cc} x^2 + y^2 - 1 & 2xy \\ 2xy & x^2 + y^2 - 2 \end{array} \right).$$

(1) $Hf(0,0) = 12 \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} \Rightarrow (0,0)^T$ is a strict local maximum

- (2) $Hf(0, \pm\sqrt{6}) = 12 \begin{pmatrix} 5 & 0 \\ 0 & 4 \end{pmatrix} \Rightarrow (0, \pm\sqrt{6})^T$ are two strict local minima
- (3) $Hf(\pm\sqrt{3},0) = 12\begin{pmatrix} 2 & 0\\ 0 & 1 \end{pmatrix} \Rightarrow (\pm\sqrt{3},0)^T$ are two strict local minima

(4)
$$Hf(\pm\sqrt{\frac{15}{8}},\pm\sqrt{\frac{3}{8}}) = 12\begin{pmatrix} \frac{5}{4} & \pm\sqrt{\frac{45}{4}} \\ \pm\frac{\sqrt{45}}{4} & \frac{1}{4} \end{pmatrix} \Rightarrow \det Hf(\pm\sqrt{\frac{15}{8}},\pm\sqrt{\frac{3}{8}}) = 144 \cdot \left(-\frac{40}{16}\right) < 0$$

 $\Rightarrow (\pm\sqrt{\frac{15}{8}},\pm\sqrt{\frac{3}{2}})^T$ are four saddle points.

Critical Points and Minima/Maxima in Higher Dimensions

- x_0 is a critical point of f(x) $(x = (x_1, \ldots, x_n)^T)$ if $\frac{\partial f(x_0)}{\partial x_i} = 0$ for all $1 \le i \le n$.
- f(x) has a strict local minimum (maximum) at x_0 if there is $\epsilon > 0$ such that $f(x) > f(x_0)$ ($f(x) < f(x_0)$) whenever $0 < ||x x_0|| < \epsilon$ (where $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$).
- If f(x) has a strict local minimum or maximum at x_0 then x_0 is a critical point of f.
- If x_0 is a critical point of f(x) and the (symmetric) Hessian matrix $Hf(x_0)$ of second order partial derivatives, $(Hf(x_0))_{ij} = \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j}$, is positive (negative) definite, that is, $\xi^T Hf(x_0)\xi > 0$ (< 0) for all $\xi = (\xi_1, \ldots, \xi_n)^T$ with $\|\xi\| > 0$, then f has a strict local minimum (maximum) at x_0 .
- A critical point x_0 of f(x) with det $Hf(x_0) \neq 0$ can be a point at which f has a strict local minimum, a point at which f has a strict local maximum, or an *n*-dimensional saddle point.