9.7: Qualitative (Stability) Analysis

(1)

$$\mathbf{x}' = A\mathbf{x}, \quad A : n \times n$$

 $\mathbf{x}(t) = \mathbf{0}$ is equilibrium solution

Consider general system:

$$\mathbf{x}' = \mathbf{f}(\mathbf{x}) \tag{2}$$

Assume equilibrium $\mathbf{x}(t) = \mathbf{x}_0$:

$$f(x_0) = 0$$

Def.:

- \mathbf{x}_0 is stable if for any $\epsilon > 0$ there is a $\delta > 0$ s.t. $|\mathbf{x}(t) - \mathbf{x}_0| < \epsilon$ for all t > 0 whenever $|\mathbf{x}(0) - \mathbf{x}_0| < \delta$. (Solutions that start close to \mathbf{x}_0 remain close.)
- x_0 is unstable if it is not stable. (There are solutions starting arbitrarily close to x_0 that move 'far away' from x_0 .)
- \mathbf{x}_0 is asymptotically stable if \mathbf{x}_0 is stable and there is $\eta > 0$ s.t. $\mathbf{x}(t) \rightarrow \mathbf{x}_0$ for $t \rightarrow \infty$ whenever $|\mathbf{x}(0) - \mathbf{x}_0| < \eta$.

Def.:

- An asymptotically stable equilibrium \mathbf{x}_0 of (2) is a sink.
- An equilibrium \mathbf{x}_0 of (2) is a source if every solution $\mathbf{x}(t)$ with $|\mathbf{x}(0) \mathbf{x}_0|$ arbitrarily small eventually moves 'far away' from \mathbf{x}_0 when t increases.

Examples:

Let A be 2×2 .

The equilibrium $x_0 = 0$ of (1) is

- a sink if the phase portrait is a nodal or spiral sink
- a source if the phase portrait is a nodal or spiral source
- unstable if the phase portrait is a saddle
- stable but not asymptotically stable if the phase portrait is a center or stable saddle-node.

Thm.: Let A be $n \times n$

- 1. If $\operatorname{Re}(\lambda) < 0$ for all eigenvalues of A ($\lambda < 0$ if λ is real), then $\mathbf{x}(t) \rightarrow \mathbf{0}$ for $t \rightarrow \infty$ for any solution $\mathbf{x}(t)$ of (1). (0 is a sink)
- 2. If there is an eigenvalue λ of Awith $\operatorname{Re}(\lambda) > 0$ ($\lambda > 0$ if λ is real), then there are solutions $\mathbf{x}(t)$ of (1) with $|\mathbf{x}(0)|$ arbitrarily small that get arbitrarily large when t increases. (0 is unstable)
- 3. If $\operatorname{Re}(\lambda) > 0$ for all eigenvalues λ of A, then every solution $\mathbf{x}(t)$ of (1) with $\mathbf{x}(0) \neq 0$ gets arbitrarily large when t increases. (0 is a source)
- 4. If $\operatorname{Re}(\lambda) \leq 0$ for all eigenvalues λ of A, and for any eigenvalue with $\operatorname{Re}(\lambda) = 0$ every generalized eigenvector is an eigenvector, then 0 is stable. (Ex.: stable saddle-nodes, centers)

Proof 1. Every entry of $\mathbf{x}(t)$ consists of terms of the form $e^{\lambda t}t^k$ or $e^{\alpha t}t^k \cos\beta t$, $e^{\alpha t}t^k \sin\beta t$, with nonnegative integers k and $\lambda < 0$, $\alpha < 0$. All these terms decay to 0 if $t \to \infty$.

For n = 2:

- D > 0, $T < 0 \Rightarrow sink$
- D > 0, $T > 0 \Rightarrow$ source
- $D < 0 \Rightarrow$ saddle \Rightarrow unstable but not source

$$\begin{aligned} \mathsf{E}\mathbf{x}.: \ A &= \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow \mathbf{x}(t) = \begin{bmatrix} x_0 \\ e^{-t}y_0 \end{bmatrix} \\ \lambda &= 0 \leftrightarrow \mathbf{v} = \begin{bmatrix} 1, 0 \end{bmatrix}^T : \ \mathbf{0} \text{ is stable} \end{aligned}$$

Ex.:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{cases} T = 0 \\ D = 0 \end{cases} \Rightarrow p(\lambda) = \lambda^2$$

 $\lambda = 0 \leftrightarrow \mathbf{v} = \begin{bmatrix} 1, 0 \end{bmatrix}^T$

 $A^{2} = 0 \Rightarrow \begin{cases} \text{every vector is} \\ \text{generalized eigenvector} \end{cases}$ Solution: $\mathbf{x}(t) = (I+At)\mathbf{x}_{0} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix} = \begin{bmatrix} x_{0} \\ y_{0} + tx_{0} \end{bmatrix}$ $\Rightarrow \mathbf{0} \text{ is unstable (but not a source)}$

Worked Out Examples from Exercises

Ex. 1: Classify 0 as unstable equilibrium, stable equilibrium, sink or source of $\mathbf{x}' = A\mathbf{x}$ for the given A. Verify the classification through a phase portrait.

$$A = \begin{bmatrix} -0.2 & 2 \\ -2 & -0.2 \end{bmatrix}$$
: $D = 4.04 > 0, T = -0.4 < 0 \Rightarrow \text{sink (spiral sink)}$

Ex. 3: Same as Ex. 1 for
$$A = \begin{bmatrix} -6 & -15 \\ 3 & 6 \end{bmatrix}$$

 $D = 9, T = 0 \Rightarrow \text{center} \Rightarrow \text{stable (but not sink)}$

Ex. 5: Same as Ex. 1 for
$$A = \begin{bmatrix} 0.1 & 2 \\ -2 & 0.1 \end{bmatrix}$$
.

D = 4.04, $T = 0.2 \Rightarrow$ source (phase portrait: spiral source)

Ex. 7: Same as Ex. 1 for
$$A = \begin{bmatrix} 1 & -4 \\ 1 & -3 \end{bmatrix}$$
.

 $D = -2 \Rightarrow$ saddle \Rightarrow unstable (but not source)

Ex. 9: Classify 0 as unstable equilibrium, stable equilibrium, sink or source of $\mathbf{x}' = A\mathbf{x}$ for the given A. Verify the classification by plotting some solutions.

A =	$\begin{bmatrix} -3 & -4 & 2 \\ -2 & -7 & 4 \end{bmatrix}$	Matrix is a bit complicated, so use Matlab's <i>eig</i> command to find eigenvalues.
	-3 -8 4	Result: $\lambda_1 = -3 < 0$, $\lambda_2 = -1 < 0$, $\lambda_3 = -2 < 0 \Rightarrow$ sink

To plot trajectories in Matlab, generate solution arrays using the *expm* command and plot them using the *plot3* command.

Chosen initial values: $[1, 0, 0]^T$, $[0, 1, 0]^T$, $[0, 0, 1]^T$.

Ex. 15: Same as Ex. 9 for the given 4×4 -matrix A

A =	$\begin{array}{c} & 3 \\ & 16 \\ -14 \\ -19 \end{array}$	-2 -6 5 8	-5 -17 15 23	3 9 -8 -13	Matlab's <i>eig</i> command \Rightarrow eigenvalues 2, -1, -1, -1 (triple eigenvalue -1) \Rightarrow unstable (no source)
l	19	0	23	-12]	

Since 4d trajectories cannot be displayed, plot x_i versus t for two ICs:

```
A=[3 -2 -5 3;16 -6 -17 9;-14 5 15 -8;-19 8 23 -13];
M=200;t=linspace(0,1,M);
x01=[0.1;0.1;0.1;0.05];x02=[-0.01;-0.01;-0.01;0.001];
for n=1:M
    x1(:,n)=expm(A*t(n))*x01;
    x2(:,n)=expm(A*t(n))*x02;
end
figure(1),plot(t,x1(1,:),'k',t,x1(2,:),'k',t,x1(3,:),'k',t,x1(4,:),'k'),
xlabel('t'),ylabel('x_i(t)'),title('IC: [0.1,0.1,0.1,0.05]^T')
figure(2),plot(t,x2(1,:),'k',t,x2(2,:),'k',t,x2(3,:),'k',t,x2(4,:),'k')
```

