
8.4-5: Linear Systems
General Form:
x′
1 = a11(t)x1 + · · · + a1n(t)xn + f1(t)

x′
2 = a21(t)x1 + · · · + a2n(t)xn + f2(t)
... ... ...

x′
n = an1(t)x1 + · · · + ann(t)xn + fn(t)

• aij(t), fi(t): known functions

on interval I: α < t < β

Matrix-vector notation:

x = [x1, . . . , xn]
T

f(t) = [f1(t), . . . , fn(t)]
T

A(t) = [aij(t)]nn

x′ = A(t)x + f(t) (1)

• (1) is homogeneous if
f(t) = 0

• (1) is nonhomogeneous if
f(t) 6= 0

• (1) has constant coefficients
if aij(t) = aij are constants

Initial Value Problem:

x′ = A(t)x + f(t)

x(t0) = x0

}

(2)

Thm.: If aij(t), fi(t) are con-

tinuous on I and t0 ∈ I, then

(2) has a unique solution on I.

Ex.:

{

x′ = 3x − 5y
y′ = −2x

}

⇒

[

x′

y′

]

=

[

3 −5
−2 0

] [

x
y

]

is hom., constant coefficients.

Ex.:

{

u′ = cos(t)v
v′ = u + sin t

}

is nonhom., non-constant coefs.:

A(t) =

[

0 cos t
1 0

]

, f(t) =

[

0
sin t

]

Ex.: x′ = xy, y′ = x is nonlinear
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Superposition Principle for Homogeneous Systems (8.5)

x′ = A(t)x (3)

A(αx + βy) = αAx + βAy ⇒

Thm.: (Superposition Principle)

If x1(t), x2(t) are solutions of

(3) and c1, c2 are arbitrary

constants, then

x(t) = c1x1(t) + c2x2(t)

is also a solution.

Superposition principle does in

general not hold for

• nonlinear systems

• nonhomogeneous linear
systems

Ex.: x′ = x2 → solution x(t) = −1/t.
y(t) = −x(t) = 1/t is not solution,
because y′ = −1/t2, y2 = 1/t2.

Ex.: x′ = x − 1 → solution x(t) = 1.
y(t) = 0 · x(t) = 0 is not solution.

Ex.: x′ = Ax, A =

[

1 2
2 1

]

x1(t) =

[

e−t

−e−t

]

, x2(t) =

[

e3t

e3t

]

are solutions (verify by substitution)

⇒ x(t) = c1

[

e−t

−e−t

]

+ c2

[

e3t

e3t

]

is solution for any c1, c2. Rewrite:

x(t) =

[

e−t e3t

−e−t e3t

]

c, c =

[

c1
c2

]

Consider IC: x(0) = x0 ⇒

x(0) =

[

1 1
−1 1

]

c = x0

Invert matrix: c = 1
2

[

1 −1
1 1

]

x0

⇒ unique solution for any x0

e.g.: x0 = [3,−1]T ⇒ c = [2,1]T ⇒

x(t) = 2x1(t)+x2(t) =

[

2e−t + e3t

−2e−t + e3t

]
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Linear Independence, Fundamental Set of Solutions (8.5)

Basic Existence and Uniqueness Theorem ⇒

Thm.: Assume x1(t), . . . ,xk(t) are k solutions of

x′ = A(t)x, x ∈ Rn (3)

for t on I and that aij(t) are continuous on I. Let t0 ∈ I.

1. If there are constants c1, . . . , ck, not all 0, such that

c1x1(t0) + · · · + ckxk(t0) = 0, then c1x1(t) + · · · + ckxk(t) ≡ 0.

2. If the vectors x1(t0), . . . ,xk(t0) are linearly independent, then

x1(t), . . . ,xk(t) are linearly independent for any t on I.

Def.: (Fundamental Set) Assume x1(t), . . . ,xn(t) are n solu-

tions of (3) on an interval I on which A(t) is continuous.

x1(t), . . . , xn(t) are called a fundamental set of solutions if the

vectors x1(t), . . . ,xn(t) are linearly independent for all t on I.

Note: Thm. ⇒ it is sufficient that x1(t0), . . . ,xn(t0) are linearly

independent for some t0.
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Solution Strategy (8.5)

• Find fundamental set
x1(t), . . . ,xn(t) (Ch. 9)

• General solution:
x(t) = c1x1(t)+· · ·+cnxn(t)

• Rewrite this as

x(t) = X(t)c

c = [c1, . . . , cn]
T

X(t) = [x1(t), . . . ,xn(t)]

• X(t) (n × n) is called
fundamental matrix

• Match c to IC:

x(t0) = X(t0)c = x0

⇒ c =
(

X(t0)
)−1

x0

Wronskian: W (t) = det(X(t))

Condition for linear
independence: W (t0) 6= 0

Nonhomogeneous System:

Given a particular solution

xp(t), any solution x(t) of

x′ = A(t)x + f(t)

can be written in the form

x(t) = xp(t) + X(t)c

Ex.: x′ =

[

1 2
2 1

]

x. Solutions:

x1(t) =

[

e−t

−e−t

]

, x2(t) =

[

e3t

e3t

]

⇒ X(t) =

[

e−t e3t

−e−t e3t

]

Wronskian of x1(t),x2(t):

W(t) = det(X(t))

= e−te3t + e−te3t = 2e2t 6= 0

⇒ X(t) is fundamental matrix.
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Worked Out Examples from Exercises
Ex. 8.4.13: If possible, place system in form (1), if not possible explain why.

{

x′
1 = −2x1 + x2

2
x′
2 = 3x1 − x2

}

cannot be placed because it is nonlinear.

Ex. 8.4.14: Same as Ex. 8.4.13
{

x′
1 = −2x1 + 3tx2 + cos t

tx′
2 = x1 − 4tx2 + sin t

}

→

[

x′
1

x′
2

]

=

[

−2 3t
1/t −4

] [

x1

x2

]

+

[

cos t
(sin t)/t

]

Ex. 8.5.4: Rewrite system using matrix notation
{

x′
1 = −x2

x′
2 = x1

}

→ x′ = Ax with A =

[

0 −1
1 0

]

Ex. 8.5.6: Rewrite system using matrix notation
{

x′
1 = −x2 + sin t

x′
2 = x1

}

→ x′ = Ax + f(t) with A =

[

0 −1
1 0

]

, f(t) =

[

sin t
0

]

Ex. 8.5.10: Let x(t) =

[

cos t
sin t

]

, y(t) =

[

sin t
− cos t

]

Show that x(t),y(t) are solutions of the system of Ex. 8.5.4.
Verify that any linear combination is a solution.

1. x(t) → x1(t) = cos t, x2(t) = sin t. x′
1 = − sin t = −x2, x′

2 = cos t = x1: OK.

2. y(t) → y1(t) = sin t, y2(t) = − cos t. y′
1 = cos t = −y2, y′

2 = sin t = y1: OK.

3. (c1x(t)+c2y(t))′ = c1x′(t)+c2y′(t) = c1Ax(t)+c2Ay(t) = A(c1x(t)+c2y(t))
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Ex. 8.5.12: Let xp(t) = 1
2

[

t sin t − cos t
−t cos t

]

Show that xp(t) is a solution of the system of Ex. 8.5.6. Further show that
z(t) = xp(t) + c1x(t) + c2y(t) is also solution, where x(t),y(t) are from

Ex. 8.5.10.

1. xp(t) → x1(t) = (t sin t − cos t)/2, x2(t) = −(t cos t)/2.

a: x′
1(t) = (t cos t + sin t)/2 + (sin t)/2 = (t cos t)/2 + sin t

−x2(t) + sin t = (t cos t)/2 + sin t: OK

b: x′
2(t) = −(cos t)/2 + (t sin t)/2 = x1(t): OK

2. z′(t) = x′
p(t) + c1x′(t) + c2y′(t) = (Axp(t) + f(t)) + c1Ax(t) + c2Ay(t)

= A(xp(t) + c1x(t) + c2y(t)) + f(t)) = Az(t) + f(t)

Ex. 8.5.18: Let y1(t) =

[

2e−t

e−t

]

, y2(t) =

[

e2t

e2t

]

Suppose that y1(t), y2(t) are solutions of a homogeneous linear system.
Further suppose that x(t) is a solution of the same system with IC

x(0) = [1,−1]T . Find c1, c2 such that x(t) = c1y1(t) + c2y2(t).

Let Y (t) = [y1(t),y2(t)] ⇒ Y (0) =

[

2 1
1 1

]

⇒ c = (Y (0))−1x(0) =

[

1 −1
−1 2

] [

1
−1

]

=

[

2
−3

]

⇒ c1 = 2, c2 = −3

6



Ex. 8.5.19: Let y1(t) =





−e−t

−e−t

e−t



, y2(t) =





0
−et

2et



, y3(t) =





e2t

0
2e2t





y1(t),y2(t),y3(t) are solutions of a homogeneous linear system. Check linear
dependence or independence of these solutions.

Let Y (t) = [y1(t),y2(t),y3(t)]. It is sufficient to check for t = 0. Wronskian:

W(0) = det(Y (0)) =

∣

∣

∣

∣

∣

∣

−1 0 1
−1 −1 0
1 2 2

∣

∣

∣

∣

∣

∣

= (−1)2+1(−1)

∣

∣

∣

∣

0 1
2 2

∣

∣

∣

∣

+ (−1)2+2(−1)

∣

∣

∣

∣

−1 1
1 2

∣

∣

∣

∣

= −2 + 3 = 1

⇒ y1(t),y2(t),y3(t) are linearly independent for all t.

Confirm this using Matlab’s symbolic toolbox:

syms t;y1=[-exp(-t);-exp(-t);exp(-t)];y2=[0;-exp(t);2*exp(t)];
y3=[exp(2*t);0;2*exp(2*t)];Y=[y1 y2 y3];simplify(det(Y))

Answer in Command Window:

>> exp(2*t)

Hence W(t) = e2t which is indeed nonzero for all t. 7


