8.1 Definitions and Examples

System of 1st order ODE	S:
$x'_1 = f_1(t, x_1, \ldots, x_n)$	
$ \begin{array}{rcl} \vdots \\ x'_n &=& f_n(t, x_1, \dots, x_n) \end{array} $	
Vector notation:	
$\mathbf{x} = [x_1, \dots, x_n]^T$	
$\mathbf{f} = [f_1, \dots, f_n]^T$	
$\mathbf{x}' = [x'_1, \dots, x'_n]^T$	
$\mathbf{x}' = \mathbf{f}(t, \mathbf{x})$	(1)
n: dimension of system	

- n = 2: planar system
 - (1) is autonomous if f does not depend on t
 - (1) is non-autonomous if f depends on t

Initial Value Problem:

$$\mathbf{x}' = \mathbf{f}(t, \mathbf{x}), \ \mathbf{x}(t_0) = \mathbf{x}_0$$
 (2)
Thm.: If f is continuous in a
region R and has continuous
partial derivatives $\partial f_i / \partial x_j$ in R,
(2) has a unique solution in R.

Ex.:
$$x'_{1} = -ax_{1}x_{2}$$

 $x'_{2} = ax_{1}x_{2} - bx_{2}$
 $x'_{3} = bx_{2}$
 $\mathbf{x} = [x_{1}, x_{2}, x_{3}]^{T}$
 $\mathbf{f}(\mathbf{x}) = [-ax_{1}x_{2}, ax_{1}x_{2} - bx_{2}, bx_{2}]^{T}$

 $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ is 3*d* autonomous system

Ex.:
$$x' = v$$

 $v' = -x - 0.2v + 2\cos t$

is 2d non-autonomous system

Reduction of Higher Order Equations

Thm. Any system of higher order ODEs in explicit form can be transformed to a (larger) system of first order ODEs.

Ex.:
$$x''' + xx'' = \cos t$$
 (3)
Set $x_1 = x, x_2 = x', x_3 = x''$
 $\Rightarrow x'_1 = x' = x_2$
 $x'_2 = x'' = x_3$
 $x'_3 = x''' = -xx'' + \cos t$
 $= -x_1x_3 + \cos t$

Hence equivalent system:

$$\begin{array}{rcl}
x'_{1} &=& x_{2} \\
x'_{2} &=& x_{3} \\
x'_{3} &=& -x_{1}x_{3} + \cos t
\end{array} \tag{4}$$

Given a solution x(t) of $(3) \Rightarrow$ $[x(t), x'(t), x''(t)]^T$ is solution of (4) Conversely: Given a solution $\mathbf{x}(t) = [x_1(t), x_2(t), x_3(t)]^T$ of (4) \Rightarrow $x(t) = x_1(t)$ is a solution of (3) General Higher Order ODEs: nth order ODE in explicit form: $x^{(n)} = f(t, x, x', ..., x^{(n-1)})$ Set $x_1 = x, x_2 = x', ..., x_n = x^{(n-1)}$ $\Rightarrow x'_1 = x' = x_2$ $x'_2 = x'' = x_3$ \vdots $x'_{n-1} = x^{(n-1)} = x_n$ $x'_n = x^{(n)} = f(t, x, x', ..., x^{(n-1)})$ $= f(t, x_1, x_2, ..., x_n)$ \Rightarrow equivalent system:

$$\begin{array}{rcl}
x_1' &=& x_2 \\
x_2' &=& x_3 \\
& & \vdots \\
x_{n-1}' &=& x_n \\
& & x_n' &=& f(t, x_1, x_2, \dots, x_n)
\end{array}$$

2

Worked Out Examples from Exercises

Ex. 1: Is the system autonomous? What is the dimension? x' = v $v' = -x - 0.02v + 2\cos t$ is non-autonomous (cos t). Dimension: 2

Ex. 2: Same questions as in Ex. 1 $\theta' = \omega$ $\omega' = -(g/L)\sin\theta + (k/m)\omega$ is autonomous. Dimension: 2

Ex. 7: Show that given functions are solutions of initial value problem
IVP:
$$\begin{cases} x' = -4x + 6y \\ y' = -3x + 5y \end{cases}$$
, $\begin{cases} x(0) = 0 \\ y(0) = 1 \end{cases}$; functions $\begin{cases} x(t) = 2e^{2t} - 2e^{-t} \\ y(t) = -e^{-t} + 2e^{2t} \end{cases}$
 $x'(t) = 4e^{2t} + 2e^{-t}$, $-4x(t) + 6y(t) = -4(2e^{2t} - 2e^{-t}) + 6(-e^{-t} + 2e^{2t}) = 4e^{2t} + 2e^{-t}$
 $y'(t) = e^{-t} + 4e^{2t}$, $-3x(t) + 5y(t) = -3(2e^{2t} - 2e^{-t}) + 5(-e^{-t} + 2e^{2t}) = e^{-t} + 4e^{2t}$
IC: $x(0) = 0$, $y(0) = 1$,

hence x(t), y(t) are solutions of IVP

3