Chapter 8: Introduction to Systems

8.1 Definitions and Examples

System of 1st order ODEs:

$$
\begin{gathered}
x_{1}^{\prime}=f_{1}\left(t, x_{1}, \ldots, x_{n}\right) \\
\vdots \\
x_{n}^{\prime}=f_{n}\left(t, x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

Vector notation:

$$
\begin{align*}
& \mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T} \\
& \mathbf{f}=\left[f_{1}, \ldots, f_{n}\right]^{T} \\
& \mathbf{x}^{\prime}=\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right]^{T} \\
& \mathbf{x}^{\prime}=\mathbf{f}(t, \mathbf{x}) \tag{1}
\end{align*}
$$

n : dimension of system $n=2$: planar system

- (1) is autonomous if \mathbf{f} does not depend on t
- (1) is non-autonomous if \mathbf{f} depends on t

Initial Value Problem:

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{f}(t, \mathbf{x}), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} \tag{2}
\end{equation*}
$$

Thm.: If \mathbf{f} is continuous in a region R and has continuous partial derivatives $\partial f_{i} / \partial x_{j}$ in R, (2) has a unique solution in R.

> Ex.: $\quad x_{1}^{\prime}=-a x_{1} x_{2}$
> $x_{2}^{\prime}=a x_{1} x_{2}-b x_{2}$
> $x_{3}^{\prime}=b x_{2}$
> $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$
> $\mathbf{f}(\mathbf{x})=\left[-a x_{1} x_{2}, a x_{1} x_{2}-b x_{2}, b x_{2}\right]^{T}$
$\mathrm{x}^{\prime}=\mathbf{f}(\mathrm{x})$ is $3 d$ autonomous system

$$
\text { Ex.: } \quad \begin{aligned}
x^{\prime} & =v \\
& v^{\prime}=-x-0.2 v+2 \cos t
\end{aligned}
$$

is $2 d$ non-autonomous system

Reduction of Higher Order Equations

Thm. Any system of higher order ODEs in explicit form can be transformed to a (larger) system of first order ODEs.
Ex.: $\quad x^{\prime \prime \prime}+x x^{\prime \prime}=\cos t$
Set $x_{1}=x, x_{2}=x^{\prime}, x_{3}=x^{\prime \prime}$

$$
\begin{align*}
\Rightarrow x_{1}^{\prime} & =x^{\prime}=x_{2} \tag{3}\\
x_{2}^{\prime} & =x^{\prime \prime}=x_{3} \\
x_{3}^{\prime} & =x^{\prime \prime \prime}=-x x^{\prime \prime}+\cos t \\
& =-x_{1} x_{3}+\cos t
\end{align*}
$$

Hence equivalent system:

$$
\begin{align*}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =x_{3} \tag{4}\\
x_{3}^{\prime} & =-x_{1} x_{3}+\cos t
\end{align*}
$$

Given a solution $x(t)$ of (3) \Rightarrow $\left[x(t), x^{\prime}(t), x^{\prime \prime}(t)\right]^{T}$ is solution of (4)
Conversely: Given a solution
$\mathbf{x}(t)=\left[x_{1}(t), x_{2}(t), x_{3}(t)\right]^{T}$ of (4) \Rightarrow $x(t)=x_{1}(t)$ is a solution of (3)

General Higher Order ODEs:

nth order ODE in explicit form:

$$
x^{(n)}=f\left(t, x, x^{\prime}, \ldots, x^{(n-1)}\right)
$$

Set $x_{1}=x, x_{2}=x^{\prime}, \ldots, x_{n}=x^{(n-1)}$

$$
\begin{aligned}
\Rightarrow x_{1}^{\prime} & =x^{\prime}=x_{2} \\
x_{2}^{\prime} & =x^{\prime \prime}=x_{3} \\
& \vdots \\
x_{n-1}^{\prime} & =x^{(n-1)}=x_{n} \\
x_{n}^{\prime} & =x^{(n)}=f\left(t, x, x^{\prime}, \ldots, x^{(n-1)}\right) \\
& =f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

\Rightarrow equivalent system:

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =x_{3} \\
& \vdots \\
x_{n-1}^{\prime} & =x_{n} \\
x_{n}^{\prime} & =f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Worked Out Examples from Exercises

Ex. 1: Is the system autonomous? What is the dimension?

$$
\left.\begin{array}{l}
x^{\prime}=v \\
v^{\prime}=-x-0.02 v+2 \cos t
\end{array}\right\} \text { is non-autonomous }(\cos t) . \text { Dimension: } 2
$$

Ex. 2: Same questions as in Ex. 1
$\left.\begin{array}{rl}\theta^{\prime} & =\omega \\ \omega^{\prime} & =-(g / L) \sin \theta+(k / m) \omega\end{array}\right\}$ is autonomous. Dimension: 2
Ex. 7: Show that given functions are solutions of initial value problem

$$
\left.\begin{array}{l}
\text { IVP: }\left\{\begin{array}{l}
x^{\prime}=-4 x+6 y \\
y^{\prime}=-3 x+5 y
\end{array}\right\},\left\{\begin{array}{l}
x(0)=0 \\
y(0)=1
\end{array}\right\} ; \text { functions }\left\{\begin{array}{l}
x(t)=2 e^{2 t}-2 e^{-t} \\
y(t)= \\
\hline
\end{array}\right\} e^{-t}+2 e^{2 t}
\end{array}\right\}, \begin{aligned}
& x^{\prime}(t)=4 e^{2 t}+2 e^{-t},-4 x(t)+6 y(t)=-4\left(2 e^{2 t}-2 e^{-t}\right)+6\left(-e^{-t}+2 e^{2 t}\right)=4 e^{2 t}+2 e^{-t} \\
& y^{\prime}(t)=e^{-t}+4 e^{2 t},-3 x(t)+5 y(t)=-3\left(2 e^{2 t}-2 e^{-t}\right)+5\left(-e^{-t}+2 e^{2 t}\right)=e^{-t}+4 e^{2 t} \\
& \text { IC: } x(0)=0, y(0)=1
\end{aligned}
$$

hence $x(t), y(t)$ are solutions of IVP

