7.6 Square Matrices

A: square matrix ($n \times n$)

Def.: A is nonsingular if for any $\mathrm{b}, A \mathrm{x}=\mathrm{b}$ has a solution

Thm.: The following properties are equivalent:

- A is nonsingular
- $\operatorname{REF}(A)$ has no free variables
- $\operatorname{RREF}(A)=I$ (identity matrix)
- $A \mathrm{x}=\mathrm{b}$ has a unique solution for any b
- $A \mathrm{x}=0$ has only the trivial solution $\mathrm{x}=0$

Def.: A is invertible if there exists a unique matrix B s.t.

$$
A B=B A=I
$$

Set $B=A^{-1}$ (inverse matrix)

Thm.:

(a) A is invertible \Leftrightarrow
A is nonsingular
(b) If A is invertible, the unique solution of $A \mathrm{x}=\mathrm{b}$ is

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

(c) If A is invertible, then

$$
R R E F([A, I])=\left[I, A^{-1}\right]
$$

Use this to compute A^{-1}

$$
\begin{gathered}
\text { Ex. } A=\left[\begin{array}{rrr}
-3 & 6 & 8 \\
-1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right] . \quad \text { Matlab } \Rightarrow R R E F(A)=\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
x_{2}=\text { free variable } \Rightarrow A \text { is singular }
\end{gathered}
$$

(a) Consider $A \mathrm{x}=\mathrm{b}$ for

$$
\mathrm{b}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Augmented matrix:

$$
M=[A, \mathbf{b}]=\left[\begin{array}{rrrr}
-3 & 6 & 8 & 0 \\
-1 & 2 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Matlab \Rightarrow

$$
\operatorname{RREF}(M)=\left[\begin{array}{rrrr}
1 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Last row requires

$$
0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1
$$

\Rightarrow no solution
(b) Consider $A \mathrm{x}=\mathrm{b}$ for

$$
\mathbf{b}=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right] \Rightarrow M=\left[\begin{array}{rrrr}
-3 & 6 & 8 & 5 \\
-1 & 2 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Matlab \Rightarrow
$\operatorname{RREF}(M)=\left[\begin{array}{rrrr}1 & -2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

- x_{1}, x_{3} : pivot variables
- $x_{2}=t$: free variable

Equations: $\left\{\begin{array}{l}x_{1}=1+2 t \\ x_{3}=1\end{array}\right.$
$\Rightarrow \infty$ many solutions:

Ex. $A=\left[\begin{array}{rrr}3 & -4 & -8 \\ 2 & -3 & -10 \\ 0 & 0 & 2\end{array}\right] \xrightarrow{R 1(2,1,-2 / 3)}\left[\begin{array}{ccc}-3 & -4 & -8 \\ 0 & -1 / 3 & -14 / 3 \\ 0 & 0 & 2\end{array}\right]=\operatorname{REF}(A)$

$$
\text { All columns pivots } \Rightarrow A \text { nonsingular. Matlab } \Rightarrow R R E F(A)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Consider $A \mathrm{x}=\mathrm{b}$ for

$$
\mathrm{b}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Augmented matrix:

$$
M=[A, \mathbf{b}]=\left[\begin{array}{rrrr}
3 & -4 & -8 & 0 \\
2 & -3 & -10 & 1 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

Matlab \Rightarrow

$$
\operatorname{RREF}(M)=\left[\begin{array}{lllc}
1 & 0 & 0 & -12 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1 / 2
\end{array}\right]
$$

\Rightarrow unique solution:

$$
\mathrm{x}=\left[\begin{array}{c}
-12 \\
-10 \\
1 / 2
\end{array}\right]
$$

(b) Find $A^{-1} \rightarrow$ augment A by I :

$$
M=[A, I]=\left[\begin{array}{rrrrrr}
3 & -4 & -8 & 1 & 0 & 0 \\
2 & -3 & -10 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1
\end{array}\right]
$$

Matlab \Rightarrow
$\operatorname{RREF}(M)=\left[\begin{array}{llllrc}1 & 0 & 0 & 3 & -4 & -8 \\ 0 & 1 & 0 & 2 & -3 & -7 \\ 0 & 0 & 1 & 0 & 0 & 1 / 2\end{array}\right]$

$$
\Rightarrow A^{-1}=\left[\begin{array}{rrr}
3 & -4 & -8 \\
2 & -3 & -7 \\
0 & 0 & 1 / 2
\end{array}\right]
$$

Compute: $A^{-1}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-12 \\ -10 \\ 1 / 2\end{array}\right]$

Worked Out Examples

(A) Find all solutions to $A \mathrm{x}=0$. Is A singular?

Ex. 12: $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right] \xrightarrow{R 1(2,1,-1)}\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]=\operatorname{REF}(A)$.
No free variables $\Rightarrow A$ non-singular \Rightarrow only solution is $\mathrm{x}=\mathbf{0}$

$$
\text { Ex.: } \quad A=\left[\begin{array}{rr}
-1 & 1 \\
3 & -3
\end{array}\right] \xrightarrow{R 1(2,1,3)}\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right]=R E F(A) .
$$

Free variable: $x_{2}=t$, equation: $x_{1}-t=0 \Rightarrow$ solutions: $\mathrm{x}=\left[\begin{array}{c}t \\ t\end{array}\right]=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$ System has nontrivial solutions $\Rightarrow A$ singular.

$$
\text { Ex. 14: } \begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \xrightarrow[R 1(2,1,-1), R 1(3,1,-1)]{ }\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & -1 & -1
\end{array}\right] \\
\\
\stackrel{R 2(2,3)}{\longrightarrow}\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right]=R E F(A)
\end{gathered}
$$

All columns pivot \Rightarrow only trivial solution $\mathrm{x}=0 \Rightarrow A$ nonsingular
(B) Which matrices are singular? If A is nonsingular find A^{-1}

Ex.: $\quad A=\left[\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right]$ is $R E F$ with no free variables $\Rightarrow A$ nonsingular

$$
\begin{gathered}
M=[A, I]=\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 4 & 0 & 1
\end{array}\right] \xrightarrow{R 2(2,1 / 4)}\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 1 & 0 & 1 / 4
\end{array}\right] \\
\xrightarrow[R 1(1,2,-2)]{ }\left[\begin{array}{llll}
1 & 0 & 1 & -1 / 2 \\
0 & 1 & 0 & 1 / 4
\end{array}\right] \Rightarrow A^{-1}=\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 1 / 4
\end{array}\right]
\end{gathered}
$$

Ex. 23: $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ is $R E F$ with no free variables $\Rightarrow A$ nonsingular

$$
\begin{gathered}
M=[A, I]=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R 1(1,3,-1), R 1(2,3,-1)]{\longrightarrow}\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & -1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] \\
\stackrel{R 1(1,2,-1)}{ }\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \Rightarrow A^{-1}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

(C) Without solving find which systems have unique solutions

Ex. 28: $\left.\begin{array}{c}x_{1}+2 x_{2}=4 \\ x_{1}-x_{2}=6\end{array}\right\} \Rightarrow A=\left[\begin{array}{rr}1 & 2 \\ 1 & -1\end{array}\right] \xrightarrow{R 1(2,1,-1)}\left[\begin{array}{rr}1 & 2 \\ 0 & -3\end{array}\right]=R E F(A)$
$R E F(A)$ has no free variables $\Rightarrow A$ nonsingular \Rightarrow unique solution

$$
\begin{gathered}
\text { Ex. 33: } A \mathbf{x}=\mathbf{b} \text { for } A=\left[\begin{array}{rrr}
1 & 0 & 3 \\
-1 & 1 & -1 \\
0 & 2 & 4
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{rrr}
1 & 0 & 3 \\
-1 & 1 & -1 \\
0 & 2 & 4
\end{array}\right] \xrightarrow{R 1(2,1,1)}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right] \xrightarrow{R 1(3,2,-2)}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]=\operatorname{REF}(A)}
\end{gathered}
$$

$R E F(A)$ has free variable $\Rightarrow A$ singular \Rightarrow not unique solutions

Ex.: Given $A=\left[\begin{array}{rrr}0 & 2 & -4 \\ 3 & -5 & 10 \\ 2 & -4 & 8\end{array}\right], \mathbf{b}=\left[\begin{array}{l}0 \\ a \\ b\end{array}\right]$,
for what values of a, b does $A \mathrm{x}=\mathrm{b}$ have solutions?

$$
\begin{aligned}
& M=[A, \mathbf{b}]=\left[\begin{array}{rrrr}
0 & 2 & -4 & 0 \\
3 & -5 & 10 & a \\
2 & -4 & 8 & b
\end{array}\right] \xrightarrow{R 2(1,3)}\left[\begin{array}{rrrr}
2 & -4 & 8 & b \\
3 & -5 & 10 & a \\
0 & 2 & -4 & 0
\end{array}\right] \xrightarrow{R 1(2,1,-3 / 2)} \\
& {\left[\begin{array}{rrrc}
2 & -4 & 8 & b \\
0 & 1 & -2 & a-3 b / 2 \\
0 & 2 & -4 & 0
\end{array}\right] \xrightarrow{R 1(3,2,-2)}\left[\begin{array}{rrrc}
2 & -4 & 8 & b \\
0 & 1 & -2 & a-3 b / 2 \\
0 & 0 & 0 & 3 b-2 a
\end{array}\right]=\operatorname{REF}(A)}
\end{aligned}
$$

system has solutions if 4 th column in $\operatorname{REF}(A)$ is not pivot,
hence if $3 b-2 a=0$

