7.6 Square Matrices

A: square matrix $(n \times n)$

Def.: A is nonsingular if for any b, Ax = b has a solution

Thm.: The following properties are equivalent:

- A is nonsingular
- *REF(A)* has no free variables
- RREF(A) = I (identity matrix)
- $A\mathbf{x} = \mathbf{b}$ has a unique solution for any \mathbf{b}
- Ax = 0 has only the trivial solution x = 0

Def.: A is invertible if there exists a unique matrix B s.t.

AB = BA = I

Set $B = A^{-1}$ (inverse matrix)

Thm.:

- (a) A is invertible \Leftrightarrow A is nonsingular
- (b) If A is invertible, the unique solution of $A\mathbf{x} = \mathbf{b}$ is

 $\mathbf{x} = A^{-1}\mathbf{b}$

(c) If A is invertible, then

 $RREF([A, I]) = [I, A^{-1}]$

Use this to compute A^{-1}

Ex.
$$A = \begin{bmatrix} -3 & 6 & 8 \\ -1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
. Matlab $\Rightarrow RREF(A) = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

 $x_2 =$ free variable $\Rightarrow A$ is singular

(a) Consider $A\mathbf{x} = \mathbf{b}$ for $\mathbf{b} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ Augmented matrix:

$$M = [A, \mathbf{b}] = \begin{bmatrix} -3 & 6 & 8 & 0 \\ -1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

 $\mathsf{Matlab} \Rightarrow$

$$RREF(M) = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Last row requires

$$0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 = 1$$

$$\Rightarrow \text{ no solution}$$

(b) Consider Ax = b for $\mathbf{b} = \begin{vmatrix} 5 \\ 0 \\ 1 \end{vmatrix} \Rightarrow M = \begin{vmatrix} -3 & 6 & 8 & 5 \\ -1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{vmatrix}$ Matlab \Rightarrow $RREF(M) = \begin{vmatrix} 1 & -2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{vmatrix}$ • x_1, x_3 : pivot variables • $x_2 = t$: free variable Equations: $\begin{cases} x_1 = 1 + 2t \\ x_3 = 1 \end{cases}$ $\Rightarrow \infty$ many solutions: $\begin{vmatrix} \mathbf{x} = \begin{bmatrix} 1+2t \\ t \\ 1 \end{vmatrix} = t \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} + \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$

$$\begin{aligned} & \mathsf{Ex.} \ A = \begin{bmatrix} 3 & -4 & -8 \\ 2 & -3 & -10 \\ 0 & 0 & 2 \end{bmatrix}^{R1(2,1,-2/3)} \begin{bmatrix} -3 & -4 & -8 \\ 0 & -1/3 & -14/3 \\ 0 & 0 & 2 \end{bmatrix} = REF(A) \\ & \text{All columns pivots} \Rightarrow A \text{ nonsingular.} \text{ Matlab} \Rightarrow RREF(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \hline \text{(a) Consider } Ax = b \text{ for} \\ & b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \\ \text{Augmented matrix:} \\ & M = [A, b] = \begin{bmatrix} 3 & -4 & -8 & 0 \\ 2 & -3 & -10 & 1 \\ 0 & 0 & 2 & 1 \end{bmatrix} \\ \text{Matlab} \Rightarrow \\ & RREF(M) = \begin{bmatrix} 1 & 0 & 0 & -12 \\ 0 & 1 & 0 & -12 \\ 0 & 1 & 0 & -12 \\ 0 & 0 & 1 & 1/2 \end{bmatrix} \\ \Rightarrow \text{ unique solution:} \\ & x = \begin{bmatrix} -12 \\ -10 \\ 1/2 \end{bmatrix} \end{aligned}$$

(A) Find all solutions to Ax = 0. Is A singular?

Ex. 12:
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \stackrel{R1(2,1,-1)}{\to} \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} = REF(A).$$

No free variables \Rightarrow A non-singular \Rightarrow only solution is $\mathbf{x} = \mathbf{0}$

Ex.:
$$A = \begin{bmatrix} -1 & 1 \\ 3 & -3 \end{bmatrix} \stackrel{R1(2,1,3)}{\rightarrow} \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} = REF(A).$$

Free variable: $x_2 = t$, equation: $x_1 - t = 0 \Rightarrow$ solutions: $\mathbf{x} = \begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
System has nontrivial solutions $\Rightarrow A$ singular

System has nontrivial solutions $\Rightarrow A$ singular.

Ex. 14:
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow{R1(2,1,-1),R1(3,1,-1)} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix}$$
$$\xrightarrow{R2(2,3)} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix} = REF(A)$$

All columns pivot \Rightarrow only trivial solution $\mathbf{x} = \mathbf{0} \Rightarrow A$ nonsingular

(B) Which matrices are singular? If A is nonsingular find A^{-1}

Ex.:
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$$
 is *REF* with no free variables \Rightarrow *A* nonsingular
 $M = [A, I] = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 4 & 0 & 1 \end{bmatrix} \stackrel{R2(2,1/4)}{\rightarrow} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1/4 \end{bmatrix}$
 $\stackrel{R1(1,2,-2)}{\rightarrow} \begin{bmatrix} 1 & 0 & 1 & -1/2 \\ 0 & 1 & 0 & 1/4 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 1 & -1/2 \\ 0 & 1/4 \end{bmatrix}$

$$\begin{aligned} \mathbf{Ex. 23:} \quad A &= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{ is } REF \text{ with no free variables } \Rightarrow A \text{ nonsingular} \\ M &= [A, I] &= \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \overset{R1(1,3,-1),R1(2,3,-1)}{\longrightarrow} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \\ \overset{R1(1,2,-1)}{\rightarrow} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

5

(C) Without solving find which systems have unique solutions

Ex. 28:
$$\begin{cases} x_1 + 2x_2 = 4 \\ x_1 - x_2 = 6 \end{cases} \Rightarrow A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \stackrel{R1(2,1,-1)}{\rightarrow} \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix} = REF(A)$$

REF(A) has no free variables $\Rightarrow A$ nonsingular \Rightarrow unique solution

Ex. 33:
$$Ax = b$$
 for $A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
$$\begin{bmatrix} 1 & 0 & 3 \\ -1 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix} \xrightarrow{R1(2,1,1)} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{bmatrix} \xrightarrow{R1(3,2,-2)} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} = REF(A)$$

REF(A) has free variable $\Rightarrow A$ singular \Rightarrow not unique solutions

Ex.: Given
$$A = \begin{bmatrix} 0 & 2 & -4 \\ 3 & -5 & 10 \\ 2 & -4 & 8 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix}$,

for what values of a, b does $A\mathbf{x} = \mathbf{b}$ have solutions?

$$M = [A, b] = \begin{bmatrix} 0 & 2 & -4 & 0 \\ 3 & -5 & 10 & a \\ 2 & -4 & 8 & b \end{bmatrix} \stackrel{R2(1,3)}{\longrightarrow} \begin{bmatrix} 2 & -4 & 8 & b \\ 3 & -5 & 10 & a \\ 0 & 2 & -4 & 0 \end{bmatrix} \stackrel{R1(2,1,-3/2)}{\longrightarrow} \begin{bmatrix} 2 & -4 & 8 & b \\ 0 & 2 & -4 & 0 \end{bmatrix} \stackrel{R1(3,2,-2)}{\longrightarrow} \begin{bmatrix} 2 & -4 & 8 & b \\ 0 & 1 & -2 & a - 3b/2 \\ 0 & 0 & 0 & 3b - 2a \end{bmatrix} = REF(A)$$

system has solutions if 4th column in REF(A) is *not* pivot, hence if 3b - 2a = 0