
7.5 Span of a Set of Vectors

Def.: Given vectors x1, . . . ,xk

in Rn, the set of all their linear

combinations is called their

span, and is denoted by

span(x1, . . . ,xk)

Thm.: span(x1, . . . ,xk) is a

subspace of Rn

Def.: If V is a subspace of Rn,

the vectors x1, . . . ,xk in Rn are

called a spanning set for V if

V = span(x1, . . . ,xk)

⇒ any x ∈ V can be written as

x = t1x1 + t2x2 + . . . + tkxk

with numbers t1, . . . , tk

Thm.: Every subspace has a
spanning set

Nullspaces:

Ex.: Consider Ax = 0 for

A =





1 3 −2
0 −1 0
0 0 0





Free variable: x3 = t

Equations: −x2 = 0, x1 − 2t = 0

⇒ x =





2t
0
t



 = t





2
0
1





⇒ null(A) = span([2,0,1]T)

Ex.: Ax = 0 for A = [1,3,−2]

Free variables: x2 = s, x3 = t

Equation: x1 + 3s − 2t = 0

⇒ x =





2t − 3s
s
t



 = s





−3
1
0



+t





2
0
1





⇒ null(A) = span([−3,1,0]T , [2,0,1]T)
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Determine if a given x is in

span(x1, . . . ,xk):

1. Form matrix

X = [x1, . . . ,xk]

2. Try to solve the system

Xc = x

for c

3. If Xc = x has no solution

(system inconsistent), x is

not in span(x1, . . . ,xk)

4. If Xc = x has a solution

c = [c1, . . . , ck]
T , then

x = c1x1 + . . . + ckxk

is in span(x1, . . . ,xk)

Ex.: x1 =

[

−1
2

]

, x2 =

[

1
1

]

,

⇒ X =

[

−1 1
2 1

]

augmented matrix for Xc = x:

M = [X,x]

(a) Let x =

[

5
−1

]

:

M =

[

−1 1 5
2 1 −1

]

→

[

1 0 −2
0 1 3

]

⇒ solution exists, c1 = −2, c2 = 3
⇒ x = −2x1 + 3x2 is in span(x1,x2)

(b) Let x =

[

u
v

]

be arbitrary:

M =

[

−1 1 u
2 1 v

]

→

[

1 0 (v − u)/3
0 1 (2u + v)/3

]

Solution exists ⇒ span(x1,x2) = R2
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Ex.: x1 =

[

1
1

]

, x2 =

[

2
2

]

,

⇒ X =

[

1 2
1 2

]

Let x =

[

1
0

]

⇒

M =

[

1 2 1
1 2 0

]

→

[

1 2 1
0 0 −1

]

Last column pivot
⇒ solutions don’t exist
⇒ x is not in span(x1,x2)

Note: x2 = 2x1

⇒ c1x1 + c2x2 = (c1 + 2c2)x1

= (c1/2 + c2)x2

⇒ span(x1,x2) = span(x1)

= span(x2)

Ex.: x1=

[

−1
2

]

, x2=

[

1
1

]

, x3=

[

2
−1

]

General vector in span(x1,x2,x3):

x = c1x1 + c2x2 + c3x3

Since x3 = x2 − x1 ⇒

x = c1x1 + c2x2 + c3(x2 − x1)

= (c1 − c3)x1 + (c2 + c3)x2

⇒ span(x1,x2,x3) = span(x1, x2)

and on p.2 it was shown that

span(x1,x2) = R
2
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Linear Dependence and Independence

Def.: x1, . . . ,xk ∈ Rn are

• linearly independent if the
only linear combination of
them that is 0 is trivial, i.e.

c1x1 + . . . + ckxk = 0 (1)

⇒ c1 = c2 = · · · = ck = 0

• linearly dependent if there
are numbers c1, . . . , ck, not
all zero, for which (1) is
satisfied.

Linear independence check

(1) ⇒ Xc = 0 (2)

Thm.: x1, . . . ,xk are

• linearly independent if (2)

has only c = 0 as solution

• linearly dependent if (2)

has nontrivial solutions

If k > n, x1, . . . ,xk are always

linearly dependent

Ex.: x1 =

[

1
1

]

, x2 =

[

1
−1

]

X =

[

1 1
1 −1

]

R1(2,1,−1)
→

[

1 1
0 −2

]

⇒ Xc = 0 has only solution c = 0

⇒ x1,x2 are linearly independent

Ex.:

[

1
1

]

+

[

1
−1

]

−

[

2
0

]

=

[

0
0

]

⇒ the 3 vectors are
linearly dependent (k = 3 > 2)

Ex.: xj = colj(X), j = 1,2,3, where

X =





0 −2 −2
−2 −1 −3
2 2 4



 →





1 0 1
0 1 1
0 0 0





Xc = 0 for c = [1,1,−1]T ⇒

x1+x2−x3 = 0 ⇒ linearly dependent
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Bases and Dimension of a Subspace, Rank of a Matrix

Def.: A spanning set x1, . . . ,xk

for a subspace V of Rn is a

basis of V if x1, . . . ,xk are

linearly independent.

Meaning:

x ∈ V ⇒ x = a1x1 + . . . + akxk

with unique numbers a1, . . . , ak

Thm.:

1. Every subspace V has a ba-

sis (in fact, ∞ many)

2. All bases of V have the

same number of vectors

Def.: The dimension of a sub-

space V of Rn is the number

of vectors in a basis of V , and

denoted by dimV .

Def.: The rank of a matrix

X is the number of pivots in

an REF of X, and denoted by

rankX.

Thm.: Given a spanning set

x1, . . . ,xk for a subspace V of

Rn, let X = [x1, . . . ,xk]. Then

1. dimV = rankX

2. x1, . . . ,xk is a basis of V if

and only if rankX = k

3. If k = n and rankX = n,

then x1, . . . ,xn form a basis

of Rn (dimRn = n)
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Ex.: Let ej = colj(I)

where I: n × n identity matrix

e1, . . . , en are a basis of Rn

– called the standard basis

For n = 2: e1 =

[

1
0

]

, e2 =

[

0
1

]

Ex.: x1 =

[

1
1

]

, x2 =

[

1
−1

]

Claim: x1, x2 are a basis of R2

Proof: Given x =

[

x
y

]

, show that x

can be uniquely represented as

x = a1x1 + a2x2

Equations for a1, a2:
[

x
y

]

= a1

[

1
1

]

+ a2

[

1
−1

]

=

[

1 1
1 −1

] [

a1

a2

]

X =

[

1 1
1 −1

]

R1(2,1,−1)
→

[

1 1
0 −2

]

is nonsingular ⇒ unique solution

Ex.: A =





1 3 −2
0 −1 0
0 0 0





null(A) = span([2,0,1]T) (see p.1)

[2,0,1]T is a basis of null(A)

⇒ dimnull(A) = 1

Ex.: A = [1,3,−2] (see p.1)

null(A) = span([−3,1,0]T , [2,0,1]T)

[−3,1,0]T , [2,0,1]T

are linearly independent

⇒ [−3,1,0]T , [2,0,1]T

are a basis of null(A)

⇒ dimnull(A) = 2

6



Computation of a Basis of a Nullspace

A: m × n

• Transform A → REF(A)

or RREF(A)

• For each choice of a free

variable set this variable

equal to 1 and all other

free variables equal to 0

• For each of these choices

solve for the pivot variables

• ⇒ f (= ♯ of free variables)

solution vectors x1, . . . ,xf

for Ax = 0

• x1, . . . ,xf are a basis of

null(A)

Ex.: A =







3 1 1 −2
−6 1 −2 4
12 1 4 −8
6 2 2 −4







Matlab ⇒

RREF (A) =







1 0 1/3 −2/3
0 1 0 0
0 0 0 0
0 0 0 0







Free variables: x3, x4; and x2 = 0

(1) Set x3 = 1, x4 = 0 ⇒ x1 = −1/3

⇒ x1 = [−1/3,0,1,0]T

(2) Set x3 = 0, x4 = 1 ⇒ x1 = 2/3

⇒ x2 = [2/3,0,0,1]T

x1,x2 are a basis of null(A)

dimnull(A) = 2
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Solutions of Inhomogeneous Systems and Nullspaces

Form of general solution to

Ax = b:

x = xp + t1x1 + . . . + tfxf

where

• xp: particular solution

• x1, . . . ,xf : basis of null(A)

• t1, . . . , tf : free parameters

Finding xp:

• Transform M = [A,b]

to REF(M) or RREF(M)

• Set all free variables 0 and

solve for pivot variables

Ex.: Ax = b for

A =





0 −1 1
2 4 −2
2 3 −1



 ,b =





2
−6
−4





Augmented matrix: M = [A,b].
Matlab ⇒

RREF (M) =





1 0 1 1
0 1 −1 −2
0 0 0 0





Free variable: x3

Set x3 = 0 ⇒

{

x1 = 1
x2 = −2

⇒ xp = [1,−2,0]T

RREF (A) =





1 0 1
0 1 −1
0 0 0





⇒ x1 = [−1,1,1]T is basis of null(A)

Solution set: {x = xp + tx1 | t ∈ R}
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Worked Out Examples

(A) Is w in the span of the given vectors? If yes, find linear

combination of spanning vectors for w.

Ex. 1: u1 = [1,−2]T , u2 = [3,0]T . Is w = [5,−2]T in span(u1,u2)?

Set U =

[

1 3
−2 0

]

; Uc = w → M = [U,w] =

[

1 3 5
−2 0 −2

]

M →

[

1 3 5
0 6 8

]

→

[

1 3 5
0 1 4/3

]

→

[

1 0 1
0 1 4/3

]

⇒

{

yes, c = [1,4/3]T

w = u1 + (4/3)u2

}

Ex. 3: u1 = [1,−2]T , u3 = [2,−4]T . Is w = [3,−3]T in span(u1,u3)?

Here M =

[

1 2 3
−2 −4 −3

]

→

[

1 2 3
0 0 3

]

⇒ inconsistent

⇒ no, w is not in span(u1,u3) = span(u1) = span(u3)

Ex. 7: v1 = [1,−4,4]T , v2 = [0,−2,1]T , v3 = [1,−2,3]T .

Is w = [1,0,2]T in span(v1,v2,v3)?

M =





1 0 1 1
−4 −2 −2 0
4 1 3 2



 →





1 0 1 1
0 −2 2 4
0 1 −1 −2



 →





1 0 1 1
0 1 −1 2
0 0 0 0





⇒ 1-parameter family of solutions. Choose, e.g., c3 = 0 ⇒ c1 = 1, c2 = 2

⇒ yes, w = v1 − 2v2 + 0v3 is in span(v1,v2,v3)
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(B) Either show that the given vectors are linearly independent

or find nontrivial linear combination that adds to zero

Ex. 17: v1 =

[

1
2

]

, v2 =

[

−1
3

]

; X =

[

1 −1
2 3

]

R1(2,1,−2)
→

[

1 −1
0 5

]

(REF )

REF has no free variables ⇒ linearly independent

Ex. 20: v1 =





−8
9

−6



, v2 =





−2
0
7



; X =





−8 −2
9 0

−6 7





R3(1,−1/8)
→





1 1/4
9 0

−6 7





R1(2,1,−9),R1(3,1,6)
−→





1 1/4
0 −9/4
0 17/2





R1(3,2,34/9)
→





1 1/4
0 −9/4
0 0



 (REF )

REF has no free variables ⇒ linearly independent

Ex. 22: v1 =





−8
9

−6



, v2 =





−2
0
7



, v3 =





8
−18
40



; X =





−8 −2 8
9 0 −18

−6 7 40





X →





1 0 −2
0 1 4
0 0 0



 (RREF )
free variable: c3, set c3 = 1 ⇒ c1 = 2, c2 = −4

⇒ 2v1 − 4v2 + v3 = 0
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(C) Determine if nullspace of matrix is trivial (null(A) = 0) or

nontrivial. If nontrivial, find a basis.

Ex. 25: A = [2,−1] (REF ), free variable: y

set y = 1 ⇒ 2x − 1 = 0 ⇒ x = 1/2 ⇒ basis [1/2,1]T

Ex. 28: A =

[

4 4
−2 −1

]

→

[

1 1
−2 −1

]

→

[

1 1
0 1

]

⇒ null(A) = 0

Ex.: A =







0 −2 0 −2
2 −12 −4 −14
0 1 0 1

−2 11 4 13







→ . . . →







1 0 −2 −1
0 1 0 1
0 0 0 0
0 0 0 0







(RREF )

free variables: x3, x4

set x3 = 1, x4 = 0 ⇒ x1 − 2 = 0, x2 = 0 ⇒ x1 = [2,0,1,0]T

set x3 = 0, x4 = 1 ⇒ x1 − 1 = 0, x2 + 1 = 0 ⇒ x2 = [1,−1,0,1]T

x1,x2 are a basis of null(A)

11



(D) Find solution set of Ax = b using previously computed

basis of null(A).

Ex.: A as in Ex. 25, b = 2.

M = [A,b] = [2,−1,2] (REF ), free variable: y, set y = 0

⇒ 2x = 2 ⇒ x = 1 ⇒ particular solution: xp = [1,0]T

Use basis of nullspace from Ex. 25

⇒ solution set {x = [1,0]T + t[1/2,1]T | t ∈ R}

Ex.: A as in Ex. 28, b = [0,−1]T .

[A,b] =

[

4 4 0
−2 −1 −1

]

→

[

1 1 0
−2 −1 −1

]

→

[

1 1 0
0 1 −1

]

→

[

1 0 1
0 1 −1

]

Equations: x = 1, y = −1 ⇒ unique solution x = [1,−1]T

Ex.: A as in last Ex. of (C), p.11; b = [0,6,0,−6]T .

[A,b] =







0 −2 0 −2 0
2 −12 −4 −14 6
0 1 0 1 0

−2 11 4 13 −6







→ . . . →







1 0 −2 −1 3
0 1 0 1 0
0 0 0 0 0
0 0 0 0 0







(RREF )

set free variables x3 = x4 = 0 ⇒ x1 = 3, x2 = 0

⇒ particular solution xp = [3,0,0,0]T . Use basis of nullspace from Ex. on p.11

⇒ solution set {x = [3,0,0,0]T + s[2,0,1,0]T + t[1,−1,0,1]T | s, t ∈ R}
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