7.5 Span of a Set of Vectors

Def.: Given vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ in \mathbf{R}^{n}, the set of all their linear combinations is called their span, and is denoted by

$$
\operatorname{span}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)
$$

Thm.: $\operatorname{span}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$ is a subspace of \mathbf{R}^{n}
Def.: If V is a subspace of \mathbf{R}^{n}, the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ in \mathbf{R}^{n} are called a spanning set for V if

$$
V=\operatorname{span}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)
$$

\Rightarrow any $\mathrm{x} \in V$ can be written as

$$
\mathbf{x}=t_{1} \mathbf{x}_{1}+t_{2} \mathbf{x}_{2}+\ldots+t_{k} \mathbf{x}_{k}
$$

with numbers t_{1}, \ldots, t_{k}
Thm.: Every subspace has a spanning set

Nullspaces:

Ex.: Consider $A \mathrm{x}=0$ for

$$
A=\left[\begin{array}{rrr}
1 & 3 & -2 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Free variable: $x_{3}=t$
Equations: $-x_{2}=0, x_{1}-2 t=0$

$$
\begin{aligned}
& \Rightarrow \mathbf{x}=\left[\begin{array}{c}
2 t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
& \Rightarrow \operatorname{null}(A)=\operatorname{span}\left([2,0,1]^{T}\right)
\end{aligned}
$$

Ex.: $A \mathrm{x}=0$ for $A=[1,3,-2]$
Free variables: $x_{2}=s, x_{3}=t$
Equation: $x_{1}+3 s-2 t=0$
$\Rightarrow \mathrm{x}=\left[\begin{array}{c}2 t-3 s \\ s \\ t\end{array}\right]=s\left[\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$
$\Rightarrow \operatorname{null}(A)=\operatorname{span}\left([-3,1,0]^{T},[2,0,1]^{T}\right)$

Determine if a given x is in

 $\operatorname{span}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$:1. Form matrix

$$
X=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right]
$$

2. Try to solve the system

$$
X c=\mathrm{x}
$$

for c
3. If $X \mathbf{c}=\mathrm{x}$ has no solution (system inconsistent), x is not in $\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathrm{x}_{k}\right)$
4. If $X \mathbf{c}=\mathbf{x}$ has a solution $\mathbf{c}=\left[c_{1}, \ldots, c_{k}\right]^{T}$, then $\mathbf{x}=c_{1} \mathbf{x}_{1}+\ldots+c_{k} \mathbf{x}_{k}$ is in $\operatorname{span}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}\right)$

Ex.: $\mathrm{x}_{1}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$,

$$
\Rightarrow X=\left[\begin{array}{rr}
-1 & 1 \\
2 & 1
\end{array}\right]
$$

augmented matrix for $X c=\mathrm{x}$:

$$
M=[X, \mathrm{x}]
$$

(a) Let $x=\left[\begin{array}{r}5 \\ -1\end{array}\right]$:
$M=\left[\begin{array}{rrr}-1 & 1 & 5 \\ 2 & 1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 3\end{array}\right]$
\Rightarrow solution exists, $c_{1}=-2, c_{2}=3$
$\Rightarrow \mathrm{x}=-2 \mathrm{x}_{1}+3 \mathrm{x}_{2}$ is in $\operatorname{span}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
(b) Let $\mathrm{x}=\left[\begin{array}{l}u \\ v\end{array}\right]$ be arbitrary:
$M=\left[\begin{array}{rrr}-1 & 1 & u \\ 2 & 1 & v\end{array}\right] \rightarrow\left[\begin{array}{llc}1 & 0 & (v-u) / 3 \\ 0 & 1 & (2 u+v) / 3\end{array}\right]$
Solution exists $\Rightarrow \operatorname{span}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathbf{R}^{2}$

Ex.: $\mathrm{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$,

$$
\Rightarrow X=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

Let $\mathrm{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \Rightarrow$

$$
M=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

Last column pivot
\Rightarrow solutions don't exist
$\Rightarrow \mathrm{x}$ is not in $\operatorname{span}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
Note: $\mathrm{x}_{2}=2 \mathrm{x}_{1}$

$$
\begin{aligned}
\Rightarrow c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2} & =\left(c_{1}+2 c_{2}\right) \mathbf{x}_{1} \\
& =\left(c_{1} / 2+c_{2}\right) \mathbf{x}_{2} \\
\Rightarrow \operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\operatorname{span}\left(\mathbf{x}_{1}\right) \\
& =\operatorname{span}\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

Ex.: $x_{1}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], x_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right], x_{3}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$
General vector in $\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$:

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+c_{3} \mathbf{x}_{3}
$$

Since $x_{3}=x_{2}-x_{1} \Rightarrow$

$$
\begin{aligned}
& \mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+c_{3}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \\
&=\left(c_{1}-c_{3}\right) \mathbf{x}_{1}+\left(c_{2}+c_{3}\right) \mathbf{x}_{2} \\
& \Rightarrow \operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)=\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
\end{aligned}
$$

and on p. 2 it was shown that

$$
\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathbf{R}^{2}
$$

Linear Dependence and Independence

Def.: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k} \in \mathbf{R}^{n}$ are

- linearly independent if the only linear combination of them that is 0 is trivial, i.e.

$$
\begin{aligned}
& c_{1} \mathbf{x}_{1}+\ldots+c_{k} \mathbf{x}_{k}=0 \\
& \Rightarrow c_{1}=c_{2}=\cdots=c_{k}=0
\end{aligned}
$$

- linearly dependent if there are numbers c_{1}, \ldots, c_{k}, not all zero, for which (1) is satisfied.

Linear independence check

$$
\begin{equation*}
(1) \Rightarrow X c=0 \tag{2}
\end{equation*}
$$

Thm.: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ are

- linearly independent if (2) has only $\mathbf{c}=\mathbf{0}$ as solution
- linearly dependent if (2) has nontrivial solutions

If $k>n, \mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are always linearly dependent
Ex.: $\mathrm{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
$X=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] \xrightarrow{R 1(2,1,-1)}\left[\begin{array}{rr}1 & 1 \\ 0 & -2\end{array}\right]$
$\Rightarrow X c=0$ has only solution $\mathbf{c}=0$
$\Rightarrow \mathrm{x}_{1}, \mathrm{x}_{2}$ are linearly independent
Ex.: $\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{r}1 \\ -1\end{array}\right]-\left[\begin{array}{l}2 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
\Rightarrow the 3 vectors are
linearly dependent ($k=3>2$)
Ex.: $\mathbf{x}_{j}=\operatorname{col}_{j}(X), j=1,2,3$, where
$X=\left[\begin{array}{rrr}0 & -2 & -2 \\ -2 & -1 & -3 \\ 2 & 2 & 4\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
$X \mathbf{c}=0$ for $\mathbf{c}=[1,1,-1]^{T} \Rightarrow$
$\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0 \Rightarrow$ linearly dependent

Bases and Dimension of a Subspace, Rank of a Matrix

Def.: A spanning set $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ for a subspace V of \mathbf{R}^{n} is a basis of V if $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are linearly independent.

Meaning:

$\mathbf{x} \in V \Rightarrow \mathbf{x}=a_{1} \mathbf{x}_{1}+\ldots+a_{k} \mathbf{x}_{k}$ with unique numbers a_{1}, \ldots, a_{k} Thm.:

1. Every subspace V has a basis (in fact, ∞ many)
2. All bases of V have the same number of vectors

Def.: The dimension of a subspace V of \mathbf{R}^{n} is the number of vectors in a basis of V, and denoted by $\operatorname{dim} V$.

> Def.: The rank of a matrix X is the number of pivots in an $R E F$ of X, and denoted by rank X.

> Thm.: Given a spanning set $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ for a subspace V of \mathbf{R}^{n}, let $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$. Then
> 1. $\operatorname{dim} V=\operatorname{rank} X$
> 2. $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ is a basis of V if and only if rank $X=k$
> 3. If $k=n$ and rank $X=n$, then $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ form a basis of $\mathbf{R}^{n} \quad\left(\operatorname{dim} \mathbf{R}^{n}=n\right)$

Ex.: Let $\mathbf{e}_{j}=\operatorname{col}_{j}(I)$ where $I: n \times n$ identity matrix $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are a basis of \mathbf{R}^{n}

- called the standard basis

For $n=2: \mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Ex.: $\mathrm{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$
Claim: $\mathrm{x}_{1}, \mathrm{x}_{2}$ are a basis of \mathbf{R}^{2}
Proof: Given $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$, show that \mathbf{x} can be uniquely represented as

$$
\mathbf{x}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}
$$

Equations for a_{1}, a_{2} :

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right] }=a_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
&=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \\
& X=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \xrightarrow{R 1(2,1,-1)}\left[\begin{array}{rr}
1 & 1 \\
0 & -2
\end{array}\right]
\end{aligned}
$$

is nonsingular \Rightarrow unique solution

Ex.: $A=\left[\begin{array}{rrr}1 & 3 & -2 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\operatorname{null}(A)=\operatorname{span}\left([2,0,1]^{T}\right)(\text { see } \mathrm{p} .1)
$$

$[2,0,1]^{T}$ is a basis of $\operatorname{null}(A)$

$$
\Rightarrow \operatorname{dimnull}(A)=1
$$

Ex.: $A=[1,3,-2]$ (see p.1)

$$
\operatorname{null}(A)=\operatorname{span}\left([-3,1,0]^{T},[2,0,1]^{T}\right)
$$

$$
[-3,1,0]^{T},[2,0,1]^{T}
$$

are linearly independent

$$
\Rightarrow[-3,1,0]^{T},[2,0,1]^{T}
$$

$$
\text { are a basis of null }(A)
$$

$$
\Rightarrow \operatorname{dimnull}(A)=2
$$

Computation of a Basis of a Nullspace

A: $m \times n$

- Transform $A \rightarrow R E F(A)$ or $R R E F(A)$
- For each choice of a free variable set this variable equal to 1 and all other free variables equal to 0
- For each of these choices solve for the pivot variables
- $\Rightarrow f$ ($=\sharp$ of free variables) solution vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{f}$ for $A \mathrm{x}=0$
- $\mathbf{x}_{1}, \ldots, \mathbf{x}_{f}$ are a basis of null (A)

$$
\begin{aligned}
& \text { Ex.: } A=\left[\begin{array}{rrrr}
3 & 1 & 1 & -2 \\
-6 & 1 & -2 & 4 \\
12 & 1 & 4 & -8 \\
6 & 2 & 2 & -4
\end{array}\right] \\
& \text { Matlab } \Rightarrow \\
& \operatorname{RREF}(A)=\left[\begin{array}{rrcc}
1 & 0 & 1 / 3 & -2 / 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Free variables: x_{3}, x_{4}; and $x_{2}=0$
(1) Set $x_{3}=1, x_{4}=0 \Rightarrow x_{1}=-1 / 3$

$$
\Rightarrow \mathrm{x}_{1}=[-1 / 3,0,1,0]^{T}
$$

(2) Set $x_{3}=0, x_{4}=1 \Rightarrow x_{1}=2 / 3$

$$
\Rightarrow \mathrm{x}_{2}=[2 / 3,0,0,1]^{T}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2}$ are a basis of $\operatorname{null}(A)$

$$
\operatorname{dim} \operatorname{null}(A)=2
$$

Solutions of Inhomogeneous Systems and Nullspaces

Form of general solution to

$$
\begin{gathered}
A \mathrm{x}=\mathrm{b}: \\
\mathrm{x}=\mathrm{x}_{p}+t_{1} \mathrm{x}_{1}+\ldots+t_{f} \mathrm{x}_{f}
\end{gathered}
$$

where

- x_{p} : particular solution
- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{f}$: basis of null((A)
- t_{1}, \ldots, t_{f} : free parameters

Finding x_{p} :

- Transform $M=[A, \mathbf{b}]$ to $\operatorname{REF}(M)$ or $\operatorname{RREF}(M)$
- Set all free variables 0 and solve for pivot variables

Ex.: $A \mathrm{x}=\mathrm{b}$ for

$$
A=\left[\begin{array}{rrr}
0 & -1 & 1 \\
2 & 4 & -2 \\
2 & 3 & -1
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
2 \\
-6 \\
-4
\end{array}\right]
$$

Augmented matrix: $M=[A, \mathrm{~b}]$.
Matlab \Rightarrow

$$
R R E F(M)=\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Free variable: x_{3}

$$
\begin{aligned}
& \text { Set } x_{3}=0 \Rightarrow \begin{cases}x_{1}=1 \\
x_{2} & = \\
-2\end{cases} \\
& \Rightarrow \mathbf{x}_{p}=[1,-2,0]^{T} \\
& \quad R R E F(A)=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$\Rightarrow \mathbf{x}_{1}=[-1,1,1]^{T}$ is basis of $\operatorname{null}(A)$
Solution set: $\left\{\mathbf{x}=\mathbf{x}_{p}+t \mathbf{x}_{1} \mid t \in \mathbf{R}\right\}$

Worked Out Examples

(A) Is \mathbf{w} in the span of the given vectors? If yes, find linear combination of spanning vectors for \mathbf{w}.
Ex. 1: $\mathbf{u}_{1}=[1,-2]^{T}, \mathbf{u}_{2}=[3,0]^{T}$. Is $\mathbf{w}=[5,-2]^{T}$ in $\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$? Set $U=\left[\begin{array}{rr}1 & 3 \\ -2 & 0\end{array}\right] ; U \mathbf{c}=\mathbf{w} \rightarrow M=[U, \mathbf{w}]=\left[\begin{array}{rrr}1 & 3 & 5 \\ -2 & 0 & -2\end{array}\right]$

$$
M \rightarrow\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 6 & 8
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 3 & 5 \\
0 & 1 & 4 / 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 4 / 3
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
\text { yes, } \mathbf{c}=[1,4 / 3]^{T} \\
\mathbf{w}=\mathbf{u}_{1}+(4 / 3) \mathbf{u}_{2}
\end{array}\right\}
$$

Ex. 3: $\mathbf{u}_{1}=[1,-2]^{T}, \mathbf{u}_{3}=[2,-4]^{T}$. Is $\mathbf{w}=[3,-3]^{T}$ in $\operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{3}\right)$?

$$
\text { Here } M=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-2 & -4 & -3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 3
\end{array}\right] \Rightarrow \text { inconsistent }
$$

$$
\Rightarrow \text { no, } \mathbf{w} \text { is not in } \operatorname{span}\left(\mathbf{u}_{1}, \mathbf{u}_{3}\right)=\operatorname{span}\left(\mathbf{u}_{1}\right)=\operatorname{span}\left(\mathbf{u}_{3}\right)
$$

Ex. 7: $\mathbf{v}_{1}=[1,-4,4]^{T}, \mathbf{v}_{2}=[0,-2,1]^{T}, \mathbf{v}_{3}=[1,-2,3]^{T}$. Is $\mathbf{w}=[1,0,2]^{T}$ in $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathrm{v}_{3}\right)$?

$$
M=\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
-4 & -2 & -2 & 0 \\
4 & 1 & 3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & -2 & 2 & 4 \\
0 & 1 & -1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

\Rightarrow 1-parameter family of solutions. Choose, e.g., $c_{3}=0 \Rightarrow c_{1}=1, c_{2}=2$

$$
\Rightarrow \text { yes, } \mathbf{w}=\mathbf{v}_{1}-2 \mathbf{v}_{2}+0 \mathbf{v}_{3} \text { is in } \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)
$$

(B) Either show that the given vectors are linearly independent or find nontrivial linear combination that adds to zero

Ex. 17: $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-1 \\ 3\end{array}\right] ; X=\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right] \xrightarrow{R 1(2,1,-2)}\left[\begin{array}{rr}1 & -1 \\ 0 & 5\end{array}\right](R E F)$ $R E F$ has no free variables \Rightarrow linearly independent

Ex. 20: $\mathbf{v}_{1}=\left[\begin{array}{r}-8 \\ 9 \\ -6\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 0 \\ 7\end{array}\right] ; X=\left[\begin{array}{rr}-8 & -2 \\ 9 & 0 \\ -6 & 7\end{array}\right] \xrightarrow{R 3(1,-1 / 8)}\left[\begin{array}{rr}1 & 1 / 4 \\ 9 & 0 \\ -6 & 7\end{array}\right]$

$$
R 1(2,1,-9), R 1(3,1,6)\left[\begin{array}{rr}
1 & 1 / 4 \\
0 & -9 / 4 \\
0 & 17 / 2
\end{array}\right] \xrightarrow{R 1(3,2,34 / 9)}\left[\begin{array}{rr}
1 & 1 / 4 \\
0 & -9 / 4 \\
0 & 0
\end{array}\right](R E F)
$$

$R E F$ has no free variables \Rightarrow linearly independent
Ex. 22: $\mathbf{v}_{1}=\left[\begin{array}{r}-8 \\ 9 \\ -6\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 0 \\ 7\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}8 \\ -18 \\ 40\end{array}\right] ; X=\left[\begin{array}{rrr}-8 & -2 & 8 \\ 9 & 0 & -18 \\ -6 & 7 & 40\end{array}\right]$
$X \rightarrow\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 0\end{array}\right] \begin{gathered}(R R E F)\end{gathered} \begin{gathered}\text { free variable: }\end{gathered} c_{3}$, set $c_{3}=1 \Rightarrow c_{1}=2, c_{2}=-4$
(C) Determine if nullspace of matrix is trivial (null $(A)=0$) or nontrivial. If nontrivial, find a basis.

Ex. 25: $A=[2,-1](R E F)$, free variable: y set $y=1 \Rightarrow 2 x-1=0 \Rightarrow x=1 / 2 \Rightarrow$ basis $[1 / 2,1]^{T}$

$$
\text { Ex. 28: } A=\left[\begin{array}{rr}
4 & 4 \\
-2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rr}
1 & 1 \\
-2 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \Rightarrow \operatorname{null}(A)=0
$$

Ex.: $A=\left[\begin{array}{rrrr}0 & -2 & 0 & -2 \\ 2 & -12 & -4 & -14 \\ 0 & 1 & 0 & 1 \\ -2 & 11 & 4 & 13\end{array}\right] \rightarrow \ldots \rightarrow\left[\begin{array}{rrrr}1 & 0 & -2 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ (RREF)
free variables: x_{3}, x_{4}

$$
\begin{gathered}
\text { set } x_{3}=1, x_{4}=0 \Rightarrow x_{1}-2=0, x_{2}=0 \Rightarrow \mathbf{x}_{1}=[2,0,1,0]^{T} \\
\text { set } x_{3}=0, x_{4}=1 \Rightarrow x_{1}-1=0, x_{2}+1=0 \Rightarrow \mathbf{x}_{2}=[1,-1,0,1]^{T}
\end{gathered}
$$

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \text { are a basis of } \operatorname{null}(A)
$$

(D) Find solution set of $A \mathrm{x}=\mathrm{b}$ using previously computed basis of null (A).
Ex.: A as in Ex. 25, b=2.
$M=[A, \mathbf{b}]=[2,-1,2](R E F)$, free variable: y, set $y=0$
$\Rightarrow 2 x=2 \Rightarrow x=1 \Rightarrow$ particular solution: $\mathrm{x}_{p}=[1,0]^{T}$
Use basis of nullspace from Ex. 25
\Rightarrow solution set $\left\{\mathbf{x}=[1,0]^{T}+t[1 / 2,1]^{T} \mid t \in \mathbf{R}\right\}$
Ex.: A as in Ex. 28, $\mathbf{b}=[0,-1]^{T}$.
$[A, \mathbf{b}]=\left[\begin{array}{rrr}4 & 4 & 0 \\ -2 & -1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 0 \\ -2 & -1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & -1\end{array}\right]$
Equations: $x=1, y=-1 \Rightarrow$ unique solution $\mathrm{x}=[1,-1]^{T}$
Ex.: A as in last Ex. of (C), p.11; $\mathbf{b}=[0,6,0,-6]^{T}$.
$[A, \mathbf{b}]=\left[\begin{array}{rrrrr}0 & -2 & 0 & -2 & 0 \\ 2 & -12 & -4 & -14 & 6 \\ 0 & 1 & 0 & 1 & 0 \\ -2 & 11 & 4 & 13 & -6\end{array}\right] \rightarrow \ldots \rightarrow\left[\begin{array}{rrrrr}1 & 0 & -2 & -1 & 3 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right](R R E F)$ set free variables $x_{3}=x_{4}=0 \Rightarrow x_{1}=3, x_{2}=0$
\Rightarrow particular solution $\mathbf{x}_{p}=[3,0,0,0]^{T}$. Use basis of nullspace from Ex. on p. 11

$$
\Rightarrow \text { solution set }\left\{\mathbf{x}=[3,0,0,0]^{T}+s[2,0,1,0]^{T}+t[1,-1,0,1]^{T} \mid s, t \in \underset{12}{\mathbf{R}\}}\right.
$$

