7.2: Linear Systems with Two or Three Variables

I. Geometry of Solutions

I. 1 One equation for 2 unknowns

$$
\begin{equation*}
\text { Ex.: } \quad 2 x+y=2 \tag{1}
\end{equation*}
$$

Solutions form straight line:

$$
\begin{equation*}
y=2-2 x \tag{2}
\end{equation*}
$$

Vector form of (2):

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\left[\begin{array}{c}
x \\
2-2 x
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right]+x\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
\end{aligned}
$$

Set

$$
\mathbf{p}=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

Every vector of the family

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\mathbf{p}+t \mathbf{v}=\left[\begin{array}{c}
t \\
2-2 t
\end{array}\right]
$$

(arbitrary t) satisfies (1), since

$$
2 t+(2-2 t)=2
$$

Matrix-vector form of (1):

$$
[2,1]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2
$$

Note:

$$
\begin{gathered}
{[2,1] p=[2,1]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=2} \\
{[2,1] \mathbf{v}=[2,1]\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=0}
\end{gathered}
$$

Every point on the straight line (2) can be written as $\mathbf{p}+t \mathbf{v}$ for some t.

I. 2 Two equations for 2 unknowns

$$
\text { Ex.: } \quad \begin{align*}
& x+y=2 \tag{3}\\
& x-y=0
\end{align*}
$$

Solutions are intersections of two non-parallel lines \Rightarrow single point:
(see p. 4 for solution)

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Possible intersections of two lines:

- Lines intersect in a single point \Rightarrow unique solution (generic)
- Lines are parallel, but not coincident \Rightarrow solutions don't exist

$$
\text { Ex. } \quad x+y=2
$$

- Lines coincide \Rightarrow solutions form straight line

Ex. $\quad \begin{gathered}x+y=2 \\ 2 x+2 y=4\end{gathered}$
Solutions: $y=2-x$

I. 3 One equation for 3 unknowns

$$
\begin{equation*}
\text { Ex.: } \quad 2 x-2 y+z=2 \tag{4}
\end{equation*}
$$

Solutions form plane: $z=2-2 x+2 y$ Vector form of solutions:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+x\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Use parameters (s, t) :

$$
\begin{gathered}
\mathrm{x}=\mathrm{p}+s \mathrm{v}+t \mathrm{w} \\
\mathbf{p}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right], \mathbf{v}=\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
\end{gathered}
$$

Any solution of (4) can be repre- sented in the form (5) for some (s, t)
Matrix-vector form of (4):

$$
[2,-2,1]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=2
$$

$[2,-2,1] \mathrm{v}=[2,-2,1] \mathrm{w}=0$
$[2,-2,1] \mathbf{p}=2$

I. 4 Two equations for 3 unknowns

Solutions are intersections of two planes

Possibilities:

- Planes intersect in a line (generic situation)
- Planes are parallel but not coincident \Rightarrow no solutions
- Planes coincide
\Rightarrow solutions form a plane

I. 5 Three equations for 3 unknowns

Solutions are intersections of three planes

Possibilities: Planes intersect

- in a single point (generic)
- in a line (two planes coincide)
- in a plane
(all three planes coincide)
- not at all (two planes are parallel)

I. 6 m equations for n unknowns

If $m \leq n$,

- there may be no solutions
- the minimum number, k, of parameters needed to capture all solutions satisfies $k \geq n-m$
- generic situation: $k=n-m$

II. Solution of Linear Systems of Equations

Ex. II. 1 Solve system (3):

$$
\begin{aligned}
& x+y=2 \\
& x-y=0
\end{aligned}
$$

(1) Subtract 1 st equation from 2 nd equation

$$
\Rightarrow\left\{\begin{array}{rlr}
x+y & =2 \\
-2 y & = & -2
\end{array}\right\}
$$

(2) Multiply $2 n d$ equation by $-1 / 2$

$$
\Rightarrow\left\{\begin{array}{r}
x+y=2 \\
y=1
\end{array}\right\}
$$

(3) Subtract 2 nd equation from 1st equation (or sub y)

$$
\Rightarrow\left\{\begin{array}{l}
x=1 \\
y=1
\end{array}\right\}
$$

Matrix Procedure: Rewrite (3) as

$$
\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]\left(A=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right)
$$

Form augmented matrix:

$$
M=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & -1 & 0
\end{array}\right]=[A, \mathbf{b}]
$$

(1) Subtract 1st row from 2 nd row

$$
\Rightarrow M \rightarrow\left[\begin{array}{rrr}
1 & 1 & 2 \\
0 & -2 & -2
\end{array}\right]=M_{1}
$$

(2) Multiply 2 nd row by $-1 / 2$

$$
\Rightarrow M_{1} \rightarrow\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right]=M_{2}
$$

(3) Subtract 2 nd row from 1st row

$$
\Rightarrow M_{2} \rightarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=M_{3}
$$

Rewrite M_{3} as system of equations:

$$
\left\{\begin{array}{lll}
x & & =1 \\
& y & =1
\end{array}\right\}
$$

Ex. II.2:

2 equations for 3 unknowns

$$
\begin{aligned}
u-4 v & +w=-2 \\
-2 u+10 v-3 w & =4
\end{aligned}
$$

Matrix-vector form: $A \mathbf{u}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rrr}
1 & -4 & 1 \\
-2 & 10 & -3
\end{array}\right], \mathrm{b}=\left[\begin{array}{r}
-2 \\
4
\end{array}\right]
$$

Augmented matrix:

$$
M=\left[\begin{array}{rrrr}
1 & -4 & 1 & -2 \\
-2 & 10 & -3 & 4
\end{array}\right]=[A, \mathbf{b}]
$$

(1) Add 2×1 st row to 2 nd row (to eliminate 1st entry in 2nd row)

$$
M \rightarrow\left[\begin{array}{rrrr}
1 & -4 & 1 & -2 \\
0 & 2 & -1 & 0
\end{array}\right]=M_{1}
$$

(2) Multiply 2 nd row by $1 / 2$ to normalize 1st nonzero entry of 2 nd row to unity

$$
M_{1} \rightarrow\left[\begin{array}{rrcr}
1 & -4 & 1 & -2 \\
0 & 1 & -1 / 2 & 0
\end{array}\right]=M_{2}
$$

(3) Add 4×2 nd row to 1 st row (eliminate v from 1st equation)

$$
M_{2} \rightarrow\left[\begin{array}{cccr}
1 & 0 & -1 & -2 \\
0 & 1 & -1 / 2 & 0
\end{array}\right]=M_{3}
$$

Rewrite M_{3} as system of equations:

$$
\begin{gathered}
\left\{\begin{array}{ccc}
u & -w=-2 \\
v & -w / 2= & 0
\end{array}\right\} \\
\Rightarrow\left\{\begin{array}{lll}
u= & -2+w \\
v & = & w / 2
\end{array}\right\}
\end{gathered}
$$

w can be chosen arbitrarily. Set $w=t$ and write solution in vector form:

$$
\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
-2+t \\
t / 2 \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
1 / 2 \\
1
\end{array}\right]
$$

Ex. II.3:

3 equations for 3 unknowns

$$
\begin{aligned}
x+3 z & =-2 \\
-3 x+2 y-5 z & =2 \\
2 x-4 y+z & =1
\end{aligned}
$$

Matrix-vector form: $A \mathrm{x}=\mathrm{b}$, where

$$
A=\left[\begin{array}{rrr}
1 & 0 & 3 \\
-3 & 2 & -5 \\
2 & -4 & 1
\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{r}
-2 \\
2 \\
1
\end{array}\right]
$$

Augmented matrix:

$$
M=\left[\begin{array}{rrrr}
1 & 0 & 3 & -2 \\
-3 & 2 & -5 & 2 \\
2 & -4 & 1 & 1
\end{array}\right]
$$

(1) Add 3×1 st row to 2 nd row, subtract 2×1 st row from 3rd row to create zeros below 1st entry of 1st column

$$
M \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 3 & -2 \\
0 & 2 & 4 & -4 \\
0 & -4 & -5 & 5
\end{array}\right]=M_{1}
$$

(2) Add 2×2 nd row to 3 rd row to create zero in 3rd entry of 2 nd column

$$
M_{1} \rightarrow\left[\begin{array}{llll}
1 & 0 & 3 & -2 \\
0 & 2 & 4 & -4 \\
0 & 0 & 3 & -3
\end{array}\right]=M_{2}
$$

(3) Divide 2nd row by 2 and 3rd row by 3 to create 1 's in the diagonal

$$
M_{2} \rightarrow\left[\begin{array}{llll}
1 & 0 & 3 & -2 \\
0 & 1 & 2 & -2 \\
0 & 0 & 1 & -1
\end{array}\right]=M_{3}
$$

(4) Subtract 2×3 rd row from 2 nd row and 3×3 rd row from 1st row to create zeros above last entry of 3rd column (eliminate z from 1st and 2nd equations)

$$
M_{3} \rightarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]=M_{4}
$$

Rewrite M_{4} as system of equations
\Rightarrow solution: $\left\{\begin{array}{rlr}x= & 1 \\ y= & 0 \\ z= & -1\end{array}\right\}$

