Chapter 3: Modelling and Applications

Principle: Develop model function $f(t, x)$ for the rate of change of a variable $x \Rightarrow$ First order ODE: $x^{\prime}=f(t, x)$

3.3: Personal Finance (Savings Accounts and Loans)

- $\mathbf{P (t)}$: balance on a savings account or Ioan; unit: \$; time measured in years
- r: annual interest rate ($5 \% \rightarrow r=0.05 / \mathrm{yr}$)
- Q(t): deposit/withdrawl (for savings accounts) or payment (loans) per year; unit: \$/yr

Continuous interest compound

$$
\begin{aligned}
\Rightarrow \quad & P(t+\Delta t)-P(t) \\
\approx & r P(t) \Delta t+Q(t) \Delta t
\end{aligned}
$$

$$
\begin{equation*}
\text { or } \frac{d P}{d t}=r P+Q(t) \tag{1}
\end{equation*}
$$

Solution

Use variation of parameter:

$$
\begin{aligned}
P(t)= & C P_{h}(t)+ \\
& P_{h}(t) \int\left[Q(t) / P_{h}(t)\right] d t \\
P_{h}^{\prime}= & r P_{h} \Rightarrow P_{h}(t)=e^{r t}
\end{aligned}
$$

\Rightarrow (using definite integral)

$$
\begin{equation*}
P(t)=P_{0} e^{r t}+e^{r t} \int_{0}^{t} e^{-r \tau} Q(\tau) d \tau \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } Q(t)=Q_{0}=\text { const }: \quad P(t)=e^{r t}\left(P_{0}+Q_{0} / r\right)-Q_{0} / r \tag{3}
\end{equation*}
$$ Savings accounts: $\left\{\begin{array}{cc}Q_{0}=D>0 & \text { if deposit } \\ Q_{0}=-W<0 & \text { if withdrawl }\end{array}\right\}$

Loans: $Q_{0}=-W<0 ; W$: yearly payment

Examples for (3)

Example 3.4 Savings account without deposit/withdrawl: $P(t)=P_{0} e^{r t}$
Assume $P_{0}=\$ 1000, r=0.05$.
After 40 years: $P(40)=1000 e^{0.05 \times 40}=1000 e^{2}=\$ 7389$
Ex. 4: Investment in education. Assume $P_{0}=0, r=0.0625$ (6.25 \%).
Goal: $P(18)=\$ 50,000$. Q : What is D ?

$$
\begin{aligned}
P(t)= & (D / r)\left(e^{r t}-1\right) \rightarrow \text { solve } P(18)=(D / r)\left(e^{18 r}-1\right)=50,000 \text { for } D \\
& \Rightarrow D=(50,000 \times 0.0625) /\left(e^{0.0625 \times 18}-1\right)=\$ 1502.25
\end{aligned}
$$

Ex. 6: (Loan). Assume $r=0.08$, term $=4 \mathrm{yrs}$, monthly payment $\$ 225$
$\Rightarrow W=\$ 12 \times 225 / \mathrm{yr}=\$ 2700 / \mathrm{yr}$. Question: Amount P_{0} of loan?
Solution: $P(t)=e^{r t}\left(P_{0}-W / r\right)+W / r$
Solve $P(4)=e^{4 r}\left(P_{0}-W / r\right)+W / r=0$ for P_{0}
$\Rightarrow P_{0}=(W / r)\left(1-e^{-4 r}\right)=(2700 / 0.08)\left(1-e^{-4 \times 0.08}\right)=\$ 9,242.45$
Example 3.9 Saving for retirement.
Assume Savings account with $P_{0}=0, r=0.05$ and annual deposit $D=\$ 2000$. Q : retirement start up money $P(30)=$?

$$
\text { Solution: } P(t)=(D / r)\left(e^{r t}-1\right)
$$

After 30 years: $P(30)=(2000 / 0.05)\left(e^{0.05 \times 30}-1\right)=\$ 139,267.6$ (not much!)
Example 3.11 Computing start up money needed for retirement.
Given $r=0.05$, annual withdrawl $W=\$ 50,000 / \mathrm{yr}$, find P_{0} s.t. $P(30)=0$.
Solution: $P(t)=e^{r t}\left(P_{0}-W / r\right)+W / r$
Solve $P(30)=e^{30 r}\left(P_{0}-W / r\right)+W / r=0$ for P_{0}

$$
\begin{aligned}
\Rightarrow P_{0} & =(W / r)\left(1-e^{-30 r}\right)=(50,000 / 0.05)\left(1-e^{-30 \times 0.05}\right) \\
& =10^{6}\left(1-e^{-1.5}\right)=\$ 770,896.8
\end{aligned}
$$

Example for (2)

Example 3.12 Saving for retirement start up money needed. Model:

- $S(t)$: annual salary, S_{0} : initial salary, q : annual salary increase rate

$$
\Rightarrow S^{\prime}=q S \Rightarrow S(t)=S_{0} e^{q t}
$$

- ρ : fraction of annual salary deposited \Rightarrow annual deposit:

$$
D(t)=\rho S(t)=\rho S_{0} e^{q t}
$$

- r : interest rate on savings account, P_{0} : initial deposit.

Use Eq. (2) with $Q(t)=D(t) \Rightarrow$

$$
\begin{aligned}
P(t) & =P_{0} e^{r t}+e^{r t} \int_{0}^{t} e^{-r \tau} D(\tau) d \tau=P_{0} e^{r t}+\rho S_{0} e^{r t} \int_{0}^{t} e^{-r \tau} e^{q \tau} d \tau \\
& =P_{0} e^{r t}+\rho S_{0} e^{r t} \int_{0}^{t} e^{(q-r) \tau} d \tau=P_{0} e^{r t}+\rho S_{0} e^{r t}[1 /(r-q)]\left(1-e^{(q-r) t}\right) \\
& =P_{0} e^{r t}+\left[\rho S_{0} /(r-q)\right]\left(e^{r t}-e^{q t}\right) \quad(\text { if } q \neq r)
\end{aligned}
$$

Assume $P_{0}=0$. Given P^{*} and $t=h$, determine ρ such that $P(h)=P^{*} \Rightarrow$

$$
\left[\rho S_{0} /(r-q)\right]\left(e^{r h}-e^{q h}\right)=P^{*} \Rightarrow \rho=(\mathbf{r}-\mathbf{q}) \mathbf{P}^{*} /\left[\mathbf{S}_{\mathbf{0}}\left(\mathbf{e}^{\mathbf{r h}}-\mathbf{e}^{\mathbf{q h}}\right)\right]
$$

Number Example:

$$
\begin{aligned}
& r=0.05, q=0.04, h=40 \mathrm{yrs}, P^{*}=\$ 1,600,000, S_{0}=\$ 35,000 \\
& \Rightarrow \rho \\
&=0.01 \times 1,600,000 /\left[35,000\left(e^{40 \times 0.05}-e^{40 \times 0.04}\right)\right] \\
&=(16 / 35)\left[1 /\left(e^{2}-e^{1.6}\right)\right]=0.19=19 \%
\end{aligned}
$$

Hint for Ex. 10: Use $D(t)=1000+500 t$

