2.7: Existence and Uniqueness of Solutions

Basic Existence and Uniqueness Theorem (EUT):

Suppose f(t,x) is defined and continuous, and has a continuous partial derivative $\partial f(t,x)/\partial x$ on a rectangle R in the tx-plane. Then, given any initial point (t_0, x_0) in R, the initial value problem

$$x' = f(t, x), \ x(t_0) = x_0$$

has a unique solution x(t) defined in an interval containing t_0 . Furthermore, the solution will be defined at least until the solution leaves R.

Interval of Existence:

Largest interval in which a solution of a first order ODE can be defined.

Ex.: $tx' = x + 3t^2 \Rightarrow x' = x/t + 3t$

- f and $\partial f/\partial x$ are defined and continuous for any (t, x) if $t \neq 0$
- General solution (use Sec. 2.6):

 $x(t) = 3t^2 + Ct$

- For any C: x(0) = 0, hence
 - no solution for $x(0) = x_0 \neq 0$
 - $-\infty$ solutions for x(0) = 0
- Solution for $x(t_0) = x_0, t_0 > 0$:

 $3t_0^2 + Ct_0 = x_0 \Rightarrow C = x_0/t_0 - 3t_0$

 $\Rightarrow x(t) = 3t^2 + (x_0/t_0 - 3t_0)t$

unique solution with IoE $(0,\infty)$

• EUT applies to any rectangle that is not intersected by the vertical line t = 0.

Solution curves $x(t) = 3t^2 + Ct,$ C = -2, ..., 2 **Ex.:** $x' = x^{1/3}$ S.o.V.: $\int x^{-1/3} dx = (3/2)x^{2/3} = t + D$ $\Rightarrow x_{\pm}(t) = \pm [(2/3)t + C]^{3/2}$ (C = 2D/3) • Let $C = 0 \Rightarrow x_{\pm}(0) = 0$

• Other solution with
$$x(0) = 0$$
:
 $x(t) = 0$

 $\Rightarrow\,$ At least 3 solutions for IC

x(0) = 0

• EUT doesn't apply to any rectangle that is intersected by the horizontal line x = 0

Ex.:
$$x' = -x^2$$
, $x(0) = x_0$
S.o.V.: $-\int (1/x^2)dx = 1/x = t + C$
 $\Rightarrow x = 1/(t + C)$
 $x(0) = 1/C = x_0 \Rightarrow C = 1/x_0$
 $\Rightarrow x(t) = x_0/(1 + x_0 t)$
If $x_0 > 0$
 $x_0 < 0$ \Rightarrow IoE: $\begin{cases} (-1/x_0, \infty) \\ (-\infty, -1/x_0) \end{cases}$
If $x_0 = 0 \Rightarrow x(t) = 0$, IoE: $(-\infty, \infty)$

- $f(t,x) = -x^2$ satisfies hypotheses of EUT in any rectangle
- \Rightarrow Unique solution for any x_0
- x(t) leaves any rectangle in finite time
- ⇒ Solution is not defined for all reals if $x_0 \neq 0$

Ex.: IVP
$$y' = -2y + f(t), y(0) = 3$$

 $f(t) = \begin{cases} 0 & \text{if } t < 1 \\ 5 & \text{if } t \ge 1 \end{cases}$
 $t < 1: y' = -2y \Rightarrow y(t) = 3e^{-2t}$
For $t \to 1: y(1) = 3e^{-2}$

Continue solution beyond t = 1: $t \ge 1$: y' = -2y + 5, $y(1) = 3e^{-2}$ $\Rightarrow y(t) = 3e^{-2t} + e^{-2t} \int_{1}^{t} e^{2t'} 5 dt'$ $= 5/2 + (3 - 5e^{2}/2)e^{-2t}$

Combine:

$$y(t) = \begin{cases} 3e^{-2t} & \text{if } t \le 1\\ 5/2 + (3 - 5e^2/2)e^{-2t} & \text{if } t \ge 1 \end{cases}$$

- f is discontinuous at t = 1, but unique solution exists for all t
- y'(t) is discontinuous at t = 1(see text p.80 for graph)

Ex. 1: $y' = 4 + y^2$, y(0) = 1. Does IVP have a unique solution?

Yes, because $f = 4 + y^2$ and $\partial f / \partial y = 2y$ are continuous everywhere.

Ex. 3: $y' = t \tan^{-1}(y)$, y(0) = 2. Does IVP have a unique solution? Yes (as Ex. 1).

Ex. 5: x' = t/(x+1), x(0) = 0. Does IVP have a unique solution?

Yes, because f and $\partial f/\partial x = -t/(x+1)^2$ are continuous in any rectangle away from the horizontal line x = -1, and $x(0) \neq -1$.

Ex. 7:
$$ty' - y = t^2 \cos t$$
, $y(0) = -3$.

(i) Find general solution and sketch several solutions.

(ii) Show IVP has no solution and explain why this doesn't contradict EUT.

Answer (i): $y' - y/t = t \cos t$, use integrating factor:

$$u(t) = \exp(-\int (1/t)dt) = \exp(-\ln t) = 1/t$$

$$\Rightarrow (y/t)' = \cos t \Rightarrow y/t = \sin t + C \Rightarrow y(t) = t \sin t + Ct \Rightarrow$$

Answer (ii): Since y(0) = 0 for any *C*, there is no solution that satisfies y(0) = -3. This doesn't contradict EUT because *f* is not continuous at t = 0.

