2.7: Existence and Uniqueness of Solutions

Basic Existence and Uniqueness Theorem (EUT):

Suppose $f(t, x)$ is defined and continuous, and has a continuous partial derivative $\partial f(t, x) / \partial x$ on a rectangle R in the $t x$-plane. Then, given any initial point (t_{0}, x_{0}) in R, the initial value problem

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

has a unique solution $x(t)$ defined in an interval containing t_{0}. Furthermore, the solution will be defined at least until the solution leaves R.

Interval of Existence:
Largest interval in which a solution of a first order ODE can be defined.

Ex.: $t x^{\prime}=x+3 t^{2} \Rightarrow x^{\prime}=x / t+3 t$

- f and $\partial f / \partial x$ are defined and continuous for any (t, x) if $t \neq 0$
- General solution (use Sec. 2.6):

$$
x(t)=3 t^{2}+C t
$$

- For any $C: x(0)=0$, hence
- no solution for $x(0)=x_{0} \neq 0$
$-\infty$ solutions for $x(0)=0$
- Solution for $x\left(t_{0}\right)=x_{0}, t_{0}>0$:

$$
\begin{aligned}
3 t_{0}^{2}+C t_{0} & =x_{0} \Rightarrow C=x_{0} / t_{0}-3 t_{0} \\
\Rightarrow x(t) & =3 t^{2}+\left(x_{0} / t_{0}-3 t_{0}\right) t
\end{aligned}
$$

unique solution with $\operatorname{IoE}(0, \infty)$

- EUT applies to any rectangle that is not intersected by the vertical line $t=0$.

Solution curves $x(t)=3 t^{2}+C t$, $C=-2, \ldots, 2$

Ex.: $x^{\prime}=x^{1 / 3}$

$$
\begin{aligned}
& \text { S.o.V.: } \int x^{-1 / 3} d x=(3 / 2) x^{2 / 3}=t+D \\
& \Rightarrow x_{ \pm}(t)= \pm[(2 / 3) t+C]^{3 / 2} \quad(C=2 D / 3)
\end{aligned}
$$

- Let $C=0 \Rightarrow x_{ \pm}(0)=0$
- Other solution with $x(0)=0$:

$$
x(t)=0
$$

\Rightarrow At least 3 solutions for IC

$$
x(0)=0
$$

- EUT doesn't apply to any rectangle that is intersected by the horizontal line $x=0$

Ex.: $x^{\prime}=-x^{2}, x(0)=x_{0}$
S.o.V.: $-\int\left(1 / x^{2}\right) d x=1 / x=t+C$

$$
\Rightarrow x=1 /(t+C)
$$

$$
x(0)=1 / C=x_{0} \Rightarrow C=1 / x_{0}
$$

$$
\Rightarrow x(t)=x_{0} /\left(1+x_{0} t\right)
$$

If $\left.\begin{array}{l}x_{0}>0 \\ x_{0}<0\end{array}\right\} \Rightarrow$ IoE: $\left\{\begin{array}{c}\left(-1 / x_{0}, \infty\right) \\ \left(-\infty,-1 / x_{0}\right)\end{array}\right.$
If $x_{0}=0 \Rightarrow x(t)=0$, IoE: $(-\infty, \infty)$

- $f(t, x)=-x^{2}$ satisfies hypotheses of EUT in any rectangle
\Rightarrow Unique solution for any x_{0}
- $x(t)$ leaves any rectangle in finite time
\Rightarrow Solution is not defined for all reals if $x_{0} \neq 0$

Ex.: IVP $y^{\prime}=-2 y+f(t), y(0)=3$

$$
\begin{aligned}
f(t) & =\left\{\begin{array}{lll}
0 & \text { if } & t<1 \\
5 & \text { if } & t \geq 1
\end{array}\right. \\
t<1: y^{\prime} & =-2 y \Rightarrow y(t)=3 e^{-2 t} \\
\text { For } t & \rightarrow 1: y(1)=3 e^{-2}
\end{aligned}
$$

Continue solution beyond $t=1$:

$$
\begin{aligned}
t \geq 1: y^{\prime} & =-2 y+5, y(1)=3 e^{-2} \\
\Rightarrow y(t) & =3 e^{-2 t}+e^{-2 t} \int_{1}^{t} e^{2 t^{\prime}} 5 d t^{\prime} \\
& =5 / 2+\left(3-5 e^{2} / 2\right) e^{-2 t}
\end{aligned}
$$

Combine:
$y(t)=\left\{\begin{array}{cl}3 e^{-2 t} & \text { if } t \leq 1 \\ 5 / 2+\left(3-5 e^{2} / 2\right) e^{-2 t} & \text { if } t \geq 1\end{array}\right.$

- f is discontinuous at $t=1$, but unique solution exists for all t
- $y^{\prime}(t)$ is discontinuous at $t=1$ (see text p. 80 for graph)

Worked Out Examples from Exercises

Ex. 1: $y^{\prime}=4+y^{2}, y(0)=1$. Does IVP have a unique solution?
Yes, because $f=4+y^{2}$ and $\partial f / \partial y=2 y$ are continuous everywhere.
Ex. 3: $y^{\prime}=t \tan ^{-1}(y), y(0)=2$. Does IVP have a unique solution?
Yes (as Ex. 1).
Ex. 5: $x^{\prime}=t /(x+1), x(0)=0$. Does IVP have a unique solution?
Yes, because f and $\partial f / \partial x=-t /(x+1)^{2}$ are continuous in any rectangle away from the horizontal line $x=-1$, and $x(0) \neq-1$.

$$
\text { Ex. 7: } t y^{\prime}-y=t^{2} \cos t, y(0)=-3 .
$$

(i) Find general solution and sketch several solutions.
(ii) Show IVP has no solution and explain why this doesn't contradict EUT.

Answer (i): $y^{\prime}-y / t=t \cos t$, use integrating factor:

$$
u(t)=\exp \left(-\int(1 / t) d t\right)=\exp (-\ln t)=1 / t
$$

$\Rightarrow(y / t)^{\prime}=\cos t \Rightarrow y / t=\sin t+C \Rightarrow y(t)=t \sin t+C t$
Answer (ii): Since $y(0)=0$ for any C, there is no solution that satisfies $y(0)=-3$. This doesn't contradict EUT because f is not continuous at $t=0$.

