2.9: Autonomous Equations and Stability

Form: x' = f(x)

Implicit Solution:

$$\int [1/f(x)] dx = \int dt$$

$$\Rightarrow G(x) = t + C$$

where $G(x) = \int [1/f(x)] dx$ is an antiderivative of 1/f(x)

Consequence: If x(t) is solution $\Rightarrow x(t+C)$ is solution

Equilibrium Point x_0 :

Solution of $f(x_0) = 0 \Rightarrow$ $x(t) = x_0$ is constant solution Ex: $x' = \sin(x), \ y' = y^2 + 1$ are autonomous $x' = \sin(tx), \ y' = xy$ are *not* autonomous

Ex.:
$$v' = -g - kv/m$$

$$f(v) = 0 \Rightarrow v_{term} = -gm/k$$
 is equilibrium point

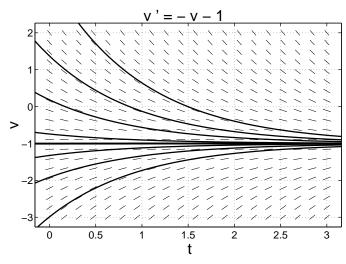
Ex.:
$$x' = (x^2 - 1)(x - 2)$$

 $f(x) = (x - 1)(x + 1)(x - 2) = 0$
 $\Rightarrow x_1 = 1, x_2 = -1, x_3 = 2$
are equilibrium points

- Direction Field: same slopes on horizontal lines
- Equilibrium Solutions $x(t) = x_0$:

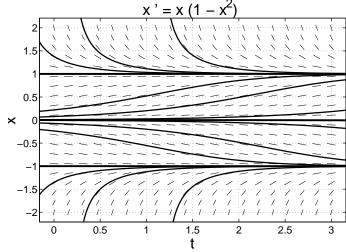
 $f(x_0) = 0 \Rightarrow$ solution curves are horizontal line

- Stability of Equilibrium: Equilibrium point x_0 is
 - <u>asymptotically stable</u> if $x(t) \to x_0$ for $t \to \infty$ when $|x(0) x_0|$ is sufficiently small
 - <u>unstable</u> if there are solutions x(t) with $|x(0)-x_0|$ arbitrarily small that move away from x_0 when t increases



Ex.: v' = -v - 1

 $v_0 = -1$: asymptotically stable



Ex.: $x' = x(1 - x^2)$

 $x_1 = 0$: unstable

 $x_{2,3} = \pm 1$: asymptotically stable

Qualitative Analysis

Properties of Solutions

- ullet Equilibrium solutions divide tx-plane into horizontal funnels
- In each funnel solutions are -increasing if x'=f(x)>0 -decreasing if x'=f(x)<0

Phase Line Plots

- Sketch graph f(x) versus x
- Mark equilibrium points on x-axis
- Indicate direction of motion (x(t)) decreasing or increasing) by arrows
- Use this to sketch solutions

Stability Criteria

Equilibrium point x_0 is

- asympt. stable if $f'(x_0) < 0$
- unstable if $f'(x_0) > 0$

If $f'(x_0) = 0$ inspect graph

Ex.: $x' = x - x^3 = x(1 - x)(1 + x)$

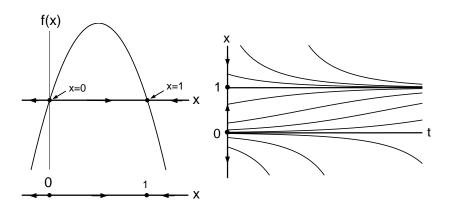
- $f(x) = 0 \Rightarrow x = 0, 1, -1$
- $f'(0) = 1 \Rightarrow 0$ is unstable
- $f'(\pm 1) = -1 \Rightarrow \pm 1$ are as. stable



Ex.:
$$x' = x - x^2 = x(1 - x)$$

Equilibria:

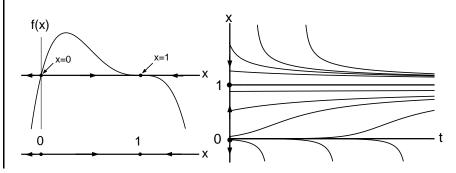
- $x = 0 \Rightarrow f'(0) = 1 \Rightarrow \text{unstable}$
- $x = 1 \Rightarrow f'(1) = -1 \Rightarrow \text{ as. stable}$



Ex.:
$$x' = x(1-x)^3$$

Equilibria:

- $x = 0 \Rightarrow f'(0) = 1 \Rightarrow \text{unstable}$
- $x = 1 \Rightarrow f'(1) = 0 \Rightarrow ??$ Graph \Rightarrow asympt. stable



Ex.:
$$x' = -x(1-x)^2$$

Equilibria:

- $x = 0 \Rightarrow f'(0) = -1 \Rightarrow \text{as. stable}$
- $x = 1 \Rightarrow f'(1) = 0 \Rightarrow ??$
- Inspect graph: $\Rightarrow x = 1$ is as. stable on right side, unstable on left side (semistable)

